import numpy as np def edge2mat(link, num_node): A = np.zeros((num_node, num_node)) for i, j in link: A[j, i] = 1 return A def normalize_digraph(A): # 除以每列的和 Dl = np.sum(A, 0) h, w = A.shape Dn = np.zeros((w, w)) for i in range(w): if Dl[i] > 0: Dn[i, i] = Dl[i] ** (-1) AD = np.dot(A, Dn) return AD def get_spatial_graph(num_node, self_link, inward, outward): I = edge2mat(self_link, num_node) In = normalize_digraph(edge2mat(inward, num_node)) Out = normalize_digraph(edge2mat(outward, num_node)) A = np.stack((I, In, Out)) return A import numpy as np def get_sgp_mat(num_in, num_out, link): A = np.zeros((num_in, num_out)) for i, j in link: A[i, j] = 1 A_norm = A / np.sum(A, axis=0, keepdims=True) return A_norm def edge2mat(link, num_node): A = np.zeros((num_node, num_node)) for i, j in link: A[j, i] = 1 return A def get_k_scale_graph(scale, A): if scale == 1: return A An = np.zeros_like(A) A_power = np.eye(A.shape[0]) for k in range(scale): A_power = A_power @ A An += A_power An[An > 0] = 1 return An def normalize_digraph(A): Dl = np.sum(A, 0) h, w = A.shape Dn = np.zeros((w, w)) for i in range(w): if Dl[i] > 0: Dn[i, i] = Dl[i] ** (-1) AD = np.dot(A, Dn) return AD def get_spatial_graph(num_node, self_link, inward, outward): I = edge2mat(self_link, num_node) In = normalize_digraph(edge2mat(inward, num_node)) Out = normalize_digraph(edge2mat(outward, num_node)) A = np.stack((I, In, Out)) return A def normalize_adjacency_matrix(A): node_degrees = A.sum(-1) degs_inv_sqrt = np.power(node_degrees, -0.5) norm_degs_matrix = np.eye(len(node_degrees)) * degs_inv_sqrt return (norm_degs_matrix @ A @ norm_degs_matrix).astype(np.float32) def k_adjacency(A, k, with_self=False, self_factor=1): assert isinstance(A, np.ndarray) I = np.eye(len(A), dtype=A.dtype) if k == 0: return I Ak = np.minimum(np.linalg.matrix_power(A + I, k), 1) \ - np.minimum(np.linalg.matrix_power(A + I, k - 1), 1) if with_self: Ak += (self_factor * I) return Ak def get_multiscale_spatial_graph(num_node, self_link, inward, outward): I = edge2mat(self_link, num_node) A1 = edge2mat(inward, num_node) A2 = edge2mat(outward, num_node) A3 = k_adjacency(A1, 2) A4 = k_adjacency(A2, 2) A1 = normalize_digraph(A1) A2 = normalize_digraph(A2) A3 = normalize_digraph(A3) A4 = normalize_digraph(A4) A = np.stack((I, A1, A2, A3, A4)) return A def get_adjacency_matrix(edges, num_nodes): A = np.zeros((num_nodes, num_nodes), dtype=np.float32) for edge in edges: A[edge] = 1. return A def get_uniform_graph(num_node, self_link, neighbor): A = normalize_digraph(edge2mat(neighbor + self_link, num_node)) return A