workshop / USDRL /action_recognition.py
qiushuocheng's picture
Upload 117 files
5de1792
import argparse
import os
import random
import shutil
import time
import warnings
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import numpy as np
from tools import AverageMeter, remove_prefix, sum_para_cnt
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
# change for action recogniton
from dataset import get_finetune_training_set,get_finetune_validation_set
global best_acc1
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--epochs', default=150, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-b', '--batch-size', default=256, type=int,metavar='N')
parser.add_argument('--lr', '--learning-rate', default=30., type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--schedule', default=[120, 140,], nargs='*', type=int,
help='learning rate schedule (when to drop lr by a ratio)')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=0., type=float,
metavar='W', help='weight decay (default: 0.)',
dest='weight_decay')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--pretrained', default='', type=str,
help='path to moco pretrained checkpoint')
parser.add_argument('--finetune-dataset', default='ntu60', type=str,
help='which dataset to use for finetuning')
parser.add_argument('--protocol', default='cross_view', type=str,
help='traiining protocol of ntu')
parser.add_argument('--moda', default='joint', type=str,
help='joint, motion , bone')
parser.add_argument('--backbone', default='DSTE', type=str,
help='DSTE or STTR')
best_acc1 = 0
def load_encoder(model, pretrained):
if os.path.isfile(pretrained):
print("=> loading checkpoint '{}'".format(pretrained))
checkpoint = torch.load(pretrained, map_location="cpu")
# rename pre-trained keys
state_dict = checkpoint['state_dict']
state_dict = remove_prefix(state_dict)
msg = model.load_state_dict(state_dict, strict=False)
print("message",msg)
assert set(msg.missing_keys) == {"fc.weight", "fc.bias"}
print("=> loaded pre-trained model '{}'".format(pretrained))
else:
print("=> no checkpoint found at '{}'".format(pretrained))
def load_pretrained(args, model):
load_encoder(model,args.pretrained)
finetune_encoder = True
return finetune_encoder
def main():
args = parser.parse_args()
if not os.path.exists(args.pretrained):
print(args.pretrained, ' not found!')
exit(0)
# Simply call main_worker function
main_worker(args)
def main_worker(args):
global best_acc1
# create model
# training dataset
from options import options_downstream as options
if args.finetune_dataset == 'pku_v2' and args.protocol == 'cross_subject':
opts = options.opts_pku_v2_xsub()
elif args.finetune_dataset== 'ntu60' and args.protocol == 'cross_view':
opts = options.opts_ntu_60_cross_view()
elif args.finetune_dataset== 'ntu60' and args.protocol == 'cross_subject':
opts = options.opts_ntu_60_cross_subject()
elif args.finetune_dataset== 'ntu120' and args.protocol == 'cross_setup':
opts = options.opts_ntu_120_cross_setup()
elif args.finetune_dataset== 'ntu120' and args.protocol == 'cross_subject':
opts = options.opts_ntu_120_cross_subject()
if args.backbone == 'DSTE':
from model.DSTE import Downstream
model = Downstream(**opts.encoder_args)
elif args.backbone == 'STTR':
from model.STTR import Downstream
model = Downstream(**opts.encoder_args)
else:
print('backbone must be DSTE or STTR')
exit(0)
print(sum_para_cnt(model)/1e6, 'M')
print("options",opts.encoder_args,opts.train_feeder_args,opts.test_feeder_args, '\n',args)
if args.pretrained:
# freeze all layers but the last fc
for name, param in model.named_parameters():
#break
if not name.startswith('fc'):
param.requires_grad = False
else:
print('params',name)
# init the fc layer
model.fc.weight.data.normal_(mean=0.0, std=0.01)
model.fc.bias.data.zero_()
# load from pre-trained model
finetune_encoder= load_pretrained(args, model)
model = nn.DataParallel(model)
model = model.cuda()
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda()
# optimize only the linear classifier
parameters = list(filter(lambda p: p.requires_grad, model.parameters()))
if args.pretrained:
assert len(parameters) == 2 # fc.weight, fc.bias
optimizer = torch.optim.SGD(parameters, args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
for parm in optimizer.param_groups:
print ("optimize parameters lr ",parm['lr'])
## Data loading code
train_dataset = get_finetune_training_set(opts)
val_dataset = get_finetune_validation_set(opts)
trainloader_params = {
'batch_size': args.batch_size,
'shuffle': True,
'num_workers': 8,
'pin_memory': True,
'prefetch_factor': 4,
'persistent_workers': True
}
valloader_params = {
'batch_size': args.batch_size,
'shuffle': False,
'num_workers': 8,
'pin_memory': True,
'prefetch_factor': 4,
'persistent_workers': True
}
train_loader = torch.utils.data.DataLoader(train_dataset, **trainloader_params)
val_loader = torch.utils.data.DataLoader(val_dataset, **valloader_params)
print('lr =', args.lr)
for epoch in range(0, 10 + args.epochs):
adjust_learning_rate(optimizer, epoch, args)
# train for one epoch
train(train_loader, model, criterion, optimizer, epoch, args)
# evaluate on validation set
if (epoch + 1) % 5 == 0:
acc1 = validate(val_loader, model, criterion, args)
else:
acc1 = 0
# remember best acc@1 and save checkpoint
is_best = acc1 > best_acc1
if is_best:
print("found new best accuracy:= ",acc1)
best_acc1 = max(acc1, best_acc1)
#state_dict = {
# 'epoch': epoch + 1,
# 'acc': best_acc1,
# 'state_dict': model.state_dict(),
# #'optimizer' : optimizer.state_dict(),
# }
# sanity check
if epoch == 0:
if finetune_encoder:
sanity_check_encoder(model.state_dict(), args.pretrained)
print(args.pretrained, "class head Final best accuracy",best_acc1)
def train(train_loader, model, criterion, optimizer, epoch, args):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(
len(train_loader),
[batch_time, data_time, losses, top1, top5],
prefix="Epoch: [{}]".format(epoch))
"""
Switch to eval mode:
Under the protocol of linear classification on frozen features/models,
it is not legitimate to change any part of the pre-trained model.
BatchNorm in train mode may revise running mean/std (even if it receives
no gradient), which are part of the model parameters too.
"""
model.eval()
end = time.time()
for i, (jt, js, bt, bs, mt, ms, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
jt = jt.float().cuda(non_blocking=True)
js = js.float().cuda(non_blocking=True)
bt = bt.float().cuda(non_blocking=True)
bs = bs.float().cuda(non_blocking=True)
mt = mt.float().cuda(non_blocking=True)
ms = ms.float().cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# compute output
output = model(jt, js, bt, bs, mt, ms, args)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), jt.size(0))
top1.update(acc1[0], jt.size(0))
top5.update(acc5[0], jt.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i + 1 == len(train_loader):
progress.display(i)
def validate(val_loader, model, criterion, args):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(
len(val_loader),
[batch_time, losses, top1, top5],
prefix='Test: ')
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
for i, (jt, js, bt, bs, mt, ms, target) in enumerate(val_loader):
jt = jt.float().cuda(non_blocking=True)
js = js.float().cuda(non_blocking=True)
bt = bt.float().cuda(non_blocking=True)
bs = bs.float().cuda(non_blocking=True)
mt = mt.float().cuda(non_blocking=True)
ms = ms.float().cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# compute output
output = model(jt, js, bt, bs, mt, ms, args)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), jt.size(0))
top1.update(acc1[0], jt.size(0))
top5.update(acc5[0], jt.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i+ 1 == len(val_loader):
progress.display(i)
# TODO: this should also be done with the ProgressMeter
print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return top1.avg
def sanity_check_encoder(state_dict, pretrained_weights):
"""
Linear classifier should not change any weights other than the linear layer.
This sanity check asserts nothing wrong happens (e.g., BN stats updated).
"""
print("=> loading '{}' for sanity check".format(pretrained_weights))
checkpoint = torch.load(pretrained_weights, map_location="cpu")
state_dict_pre = remove_prefix(checkpoint['state_dict'])
state_dict = remove_prefix(state_dict)
for k in list(state_dict.keys()):
# only ignore fc layer
if 'fc.weight' in k or 'fc.bias' in k or k.find('projector') != -1:
continue
# name in pretrained model
k_pre = 'module.' + k
k_pre = k
assert ((state_dict[k].cpu() == state_dict_pre[k_pre]).all()), \
'{} is changed in linear classifier training.'.format(k)
print("=> sanity check passed.")
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries),flush=True)
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def adjust_learning_rate(optimizer, epoch, args):
"""Decay the learning rate based on schedule"""
lr = args.lr
for milestone in args.schedule:
lr *= 0.1 if epoch >= milestone else 1.
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.reshape(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
seed = 0
random.seed(seed) # Python随机库的种子
np.random.seed(seed) # NumPy随机库的种子
torch.manual_seed(seed) # PyTorch随机库的种子
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # 如果使用多GPU
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
main()