qiushuocheng's picture
Upload 173 files
41e3185
import numpy as np
def edge2mat(link, num_node):
A = np.zeros((num_node, num_node))
for i, j in link:
A[j, i] = 1
return A
def normalize_digraph(A):
Dl = np.sum(A, 0)
h, w = A.shape
Dn = np.zeros((w, w))
for i in range(w):
if Dl[i] > 0:
Dn[i, i] = Dl[i] ** (-1)
AD = np.dot(A, Dn)
return AD
def get_spatial_graph(num_node, self_link, inward, outward): #
I = edge2mat(self_link, num_node)
In = normalize_digraph(edge2mat(inward, num_node))
Out = normalize_digraph(edge2mat(outward, num_node))
A = np.stack((I, In, Out))
return A
def k_adjacency(A, k, with_self=False, self_factor=1):
assert isinstance(A, np.ndarray)
I = np.eye(len(A), dtype=A.dtype)
if k == 0:
return I
Ak = np.minimum(np.linalg.matrix_power(A + I, k), 1) \
- np.minimum(np.linalg.matrix_power(A + I, k - 1), 1)
if with_self:
Ak += (self_factor * I)
return Ak
def normalize_adjacency_matrix(A):
node_degrees = A.sum(-1) #D
degs_inv_sqrt = np.power(node_degrees, -0.5) #D^1/2
norm_degs_matrix = np.eye(len(node_degrees)) * degs_inv_sqrt
return (norm_degs_matrix @ A @ norm_degs_matrix).astype(np.float32) #D^1/2AD^1/2
def get_adjacency_matrix(edges, num_nodes=25):
A = np.zeros((num_nodes, num_nodes), dtype=np.float32)
for edge in edges:
A[edge] = 1.
return A