|
import numpy as np |
|
|
|
def edge2mat(link, num_node): |
|
A = np.zeros((num_node, num_node)) |
|
for i, j in link: |
|
A[j, i] = 1 |
|
return A |
|
|
|
def normalize_digraph(A): |
|
Dl = np.sum(A, 0) |
|
h, w = A.shape |
|
Dn = np.zeros((w, w)) |
|
for i in range(w): |
|
if Dl[i] > 0: |
|
Dn[i, i] = Dl[i] ** (-1) |
|
AD = np.dot(A, Dn) |
|
return AD |
|
|
|
def get_spatial_graph(num_node, self_link, inward, outward): |
|
I = edge2mat(self_link, num_node) |
|
In = normalize_digraph(edge2mat(inward, num_node)) |
|
Out = normalize_digraph(edge2mat(outward, num_node)) |
|
A = np.stack((I, In, Out)) |
|
return A |
|
|
|
def k_adjacency(A, k, with_self=False, self_factor=1): |
|
assert isinstance(A, np.ndarray) |
|
I = np.eye(len(A), dtype=A.dtype) |
|
if k == 0: |
|
return I |
|
Ak = np.minimum(np.linalg.matrix_power(A + I, k), 1) \ |
|
- np.minimum(np.linalg.matrix_power(A + I, k - 1), 1) |
|
if with_self: |
|
Ak += (self_factor * I) |
|
return Ak |
|
|
|
def normalize_adjacency_matrix(A): |
|
node_degrees = A.sum(-1) |
|
degs_inv_sqrt = np.power(node_degrees, -0.5) |
|
norm_degs_matrix = np.eye(len(node_degrees)) * degs_inv_sqrt |
|
return (norm_degs_matrix @ A @ norm_degs_matrix).astype(np.float32) |
|
|
|
def get_adjacency_matrix(edges, num_nodes=25): |
|
A = np.zeros((num_nodes, num_nodes), dtype=np.float32) |
|
for edge in edges: |
|
A[edge] = 1. |
|
return A |