import numpy as np def edge2mat(link, num_node): A = np.zeros((num_node, num_node)) for i, j in link: A[j, i] = 1 return A def normalize_digraph(A): Dl = np.sum(A, 0) h, w = A.shape Dn = np.zeros((w, w)) for i in range(w): if Dl[i] > 0: Dn[i, i] = Dl[i] ** (-1) AD = np.dot(A, Dn) return AD def get_spatial_graph(num_node, self_link, inward, outward): # I = edge2mat(self_link, num_node) In = normalize_digraph(edge2mat(inward, num_node)) Out = normalize_digraph(edge2mat(outward, num_node)) A = np.stack((I, In, Out)) return A def k_adjacency(A, k, with_self=False, self_factor=1): assert isinstance(A, np.ndarray) I = np.eye(len(A), dtype=A.dtype) if k == 0: return I Ak = np.minimum(np.linalg.matrix_power(A + I, k), 1) \ - np.minimum(np.linalg.matrix_power(A + I, k - 1), 1) if with_self: Ak += (self_factor * I) return Ak def normalize_adjacency_matrix(A): node_degrees = A.sum(-1) #D degs_inv_sqrt = np.power(node_degrees, -0.5) #D^1/2 norm_degs_matrix = np.eye(len(node_degrees)) * degs_inv_sqrt return (norm_degs_matrix @ A @ norm_degs_matrix).astype(np.float32) #D^1/2AD^1/2 def get_adjacency_matrix(edges, num_nodes=25): A = np.zeros((num_nodes, num_nodes), dtype=np.float32) for edge in edges: A[edge] = 1. return A