zhaicunqi commited on
Commit
fa39d8a
·
verified ·
1 Parent(s): 58ace1c

Upload folder using huggingface_hub

Browse files
README.md CHANGED
@@ -1,3 +1,554 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - zh
5
+ - en
6
+ library_name: transformers
7
+ tags:
8
+ - qihoo360
9
+ - 奇虎360
10
+ - zhinao
11
+ - 360Zhinao
12
+ - pretrain
13
+ ---
14
+
15
+ <p align="left">
16
+ <a href="./README_CN.md">中文</a> | &nbsp English</a>&nbsp
17
+ </p>
18
+ <br>
19
+
20
+ <div align="center">
21
+ <h1>
22
+ 360Zhinao2 (360智脑)
23
+ </h1>
24
+ </div>
25
+ <div align="center">
26
+ 🤗 <a href="https://huggingface.co/qihoo360">HuggingFace</a>&nbsp&nbsp | &nbsp&nbsp
27
+ 🤖 <a href="https://www.modelscope.cn/profile/qihoo360">ModelScope</a>&nbsp&nbsp | &nbsp&nbsp
28
+ 💬 <a href="./assets/WeChat.png">WeChat (微信)</a>&nbsp&nbsp
29
+ </div>
30
+ <br>
31
+ <p align="center">
32
+ Feel free to visit 360Zhinao's official website<a href="https://ai.360.com"> https://ai.360.com</a> for more experience.
33
+ </p>
34
+
35
+ <br>
36
+
37
+ # Introduction
38
+ 🎉🎉🎉 We released the 360Zhinao2 model series:
39
+ - **360Zhinao2-7B-Base**
40
+ - **360Zhinao2-7B-Chat-4K**
41
+ - **360Zhinao2-7B-Chat-32K**
42
+ - **360Zhinao2-7B-Chat-360K**
43
+
44
+ Notable features of our 360Zhinao models are:
45
+
46
+ - **Base Model:** Using popular two-stage training method, In the first stage we totally train 10T tokens with a cosine learning rate schedule. In the second stage we increase the proportion of high-quality data and totally train 100B tokens, with the learning rate decaying directly to 0. The total training data for 360Zhinao2-7B amounts to 10.1T tokens.
47
+ - **Chat Models:** Powerful chat capabilities and three context lengths of 4K, 32K and 360K.
48
+
49
+ <br>
50
+
51
+ # News and Updates
52
+ - [2024.11.18] 🔥🔥🔥We release 360Zhinao2-7B, providing access to both the Base model and Chat models with text lengths of 4K, 32K, and 360K.
53
+ - [2024.05.23] We released two models, 360Zhinao-search and 360Zhinao-1.8B-Reranking, which ranked first respectively in the Retrieval and Reranking tasks of [C-MTEB Leaderboard](https://huggingface.co/spaces/mteb/leaderboard) .
54
+ - [2024.05.20] We extended llama3 and released **llama3-8B-360Zhinao-360k-Instruct**<a href="https://huggingface.co/qihoo360/llama3-8B-360Zhinao-360k-Instruct">🤗</a>
55
+ - [2024.04.12] We released **360Zhinao-7B** v1.0, including the base model and three chat models with context lengths 4K, 32K and 360K.
56
+ Technical report is on [arXiv](https://arxiv.org/abs/2405.13386).
57
+
58
+ <br>
59
+
60
+ # Table of contents
61
+ - [Download URL](#Download-URL)
62
+ - [Model Evaluation](#Model-Evaluation)
63
+ - [Quickstart](#Quickstart)
64
+ - [Model Inference](#Model-Inference)
65
+ - [Model Finetune](#Model-Finetune)
66
+ - [License](#License)
67
+
68
+ <br>
69
+
70
+ # Download URL
71
+
72
+ | Size | Model | BF16 | Int4|
73
+ |-|-|-|-|
74
+ | 7B | 360Zhinao2-7B-Base | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Base/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Base">🤗</a> | |
75
+ | 7B | 360Zhinao2-7B-Chat-4K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-4K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-4K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-4K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-4K-Int4">🤗</a> |
76
+ | 7B | 360Zhinao2-7B-Chat-32K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-32K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-32K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-32K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-32K-Int4">🤗</a> |
77
+ | 7B | 360Zhinao2-7B-Chat-360K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-360K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-360K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-360K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-360K-Int4">🤗</a> |
78
+
79
+ <br>
80
+
81
+ # Model Evaluation
82
+ ## Base Model
83
+ We used the open-source tool OpenCompass to evaluate the model and compared it with open-source models under 10B from the past six months. The 360Zhinao2-7B model is competive. The 360Zhinao2-7B model performs well on Chinese benchmarks such as CEval, C3 and LCSTS. The average socres of Chinese benchmarks is No 1. It also ranks No 1 on Math which is a challenging competition math dataset. **The 360Zhinao2-7B model has advantages in Chinese benchmark and challenging competition math.**
84
+
85
+ <table>
86
+ <tr>
87
+ <td>Type</td><td>Datasets</td><td>language</td><td>glm4-9b</td><td>Qwen2.5-7B</td><td>internlm2.5-7b</td><td>Yi1.5-9B</td><td>gemma2-9b</td><td>Llama3.1-8B</td><td>360Zhinao2-7B</td>
88
+ </tr>
89
+ <tr>
90
+ <td rowspan="5">Exam</td><td>ceval</td><td>zh</td><td>75.83</td><td>81.41</td><td>77.71</td><td>73.51</td><td>56.36</td><td>51.67</td><td><strong>83.04</strong></td>
91
+ </tr>
92
+ <tr>
93
+ <td>mmlu</td><td>en</td><td>75.5</td><td>75.5</td><td>71.55</td><td>71.43</td><td>72.22</td><td>66.75</td><td>67.84</td>
94
+ </tr>
95
+ <tr>
96
+ <td>cmmlu</td><td>zh</td><td>74.24</td><td>81.79</td><td>78.77</td><td>74.2</td><td>58.89</td><td>52.49</td><td>73.8</td>
97
+ </tr>
98
+ <tr>
99
+ <td>ARC-c</td><td>en</td><td>94.92</td><td>80</td><td>85.08</td><td>87.46</td><td>77.63</td><td>80.68</td><td>87.12</td>
100
+ </tr>
101
+ <tr>
102
+ <td>ARC-e</td><td>en</td><td>98.41</td><td>84.83</td><td>95.24</td><td>94.53</td><td>78.84</td><td>89.77</td><td>92.77</td>
103
+ </tr>
104
+ <tr>
105
+ <td rowspan="2">Language</td><td>WiC</td><td>en</td><td>51.57</td><td>52.82</td><td>50.78</td><td>50.63</td><td>50.47</td><td>50</td><td>49.84</td>
106
+ </tr>
107
+ <tr>
108
+ <td>WSC</td><td>en</td><td>68.27</td><td>68.27</td><td>69.23</td><td>66.35</td><td>68.27</td><td>67.31</td><td>65.38</td>
109
+ </tr>
110
+ <tr>
111
+ <td rowspan="2">Knowledge</td>
112
+ <td>BoolQ</td><td>en</td><td>81.8</td><td>83.88</td><td>89.51</td><td>84.46</td><td>85.6</td><td>82.2</td><td>88.29</td>
113
+ </tr>
114
+ <tr>
115
+ <td>commonsense_qa</td><td>en</td><td>71.17</td><td>73.22</td><td>68.55</td><td>71.58</td><td>68.47</td><td>71.25</td><td>69.78</td>
116
+ </tr>
117
+ <tr>
118
+ <td rowspan="6">Understanding</td>
119
+ <td>C3</td><td>zh</td><td>91.51</td><td>92</td><td>93.04</td><td>85.86</td><td>81.64</td><td>83.51</td><td><strong>93.26</strong></td>
120
+ </tr>
121
+ <tr>
122
+ <td>race-middle</td><td>en</td><td>91.99</td><td>91.02</td><td>92.06</td><td>91.16</td><td>88.09</td><td>81.69</td><td>90.46</td>
123
+ </tr>
124
+ <tr>
125
+ <td>race-high</td><td>en</td><td>90.71</td><td>87.91</td><td>90.08</td><td>88.34</td><td>82.08</td><td>78.73</td><td>86.74</td>
126
+ </tr>
127
+ <tr>
128
+ <td>lcsts</td><td>zh</td><td>18.29</td><td>15.82</td><td>15.96</td><td>16.49</td><td>10.62</td><td>17.29</td><td><strong>18.61</strong></td>
129
+ </tr>
130
+ <tr>
131
+ <td>eprstmt-dev</td><td>zh</td><td>91.88</td><td>86.88</td><td>91.25</td><td>91.88</td><td>48.12</td><td>83.12</td><td>90</td>
132
+ </tr>
133
+ <tr>
134
+ <td>lambada</td><td>en</td><td>71.67</td><td>71.14</td><td>69.98</td><td>70.64</td><td>75.43</td><td>74.23</td><td>72.56</td>
135
+ </tr>
136
+ <tr>
137
+ <td rowspan="3">Reasoning</td>
138
+ <td>hellaswag</td><td>en</td><td>70.25</td><td>72.76</td><td>70.38</td><td>71.55</td><td>66.83</td><td>74.65</td><td>71.49</td>
139
+ </tr>
140
+ <tr>
141
+ <td>siqa</td><td>en</td><td>81.73</td><td>72.52</td><td>78.97</td><td>76.2</td><td>58.96</td><td>64.18</td><td>77.12</td>
142
+ </tr>
143
+ <tr>
144
+ <td>bbh</td><td>en</td><td>73.68</td><td>54.63</td><td>59.43</td><td>67.86</td><td>68.45</td><td>59.9</td><td>46.54</td>
145
+ </tr>
146
+ <tr>
147
+ <td rowspan="2">Code</td>
148
+ <td>humaneval</td><td>en</td><td>69.51</td><td>75</td><td>60.37</td><td>26.22</td><td>5.49</td><td>27.44</td><td>60.98</td>
149
+ </tr>
150
+ <tr>
151
+ <td>mbpp</td><td>en</td><td>60</td><td>60</td><td>43.6</td><td>56.8</td><td>51.2</td><td>42.6</td><td>54</td>
152
+ </tr>
153
+ <tr>
154
+ <td rowspan="2">Math</td>
155
+ <td>math</td><td>en</td><td>26.86</td><td>38</td><td>27.14</td><td>27.06</td><td>28.52</td><td>15.32</td><td><strong>38.34</strong></td>
156
+ </tr>
157
+ <tr>
158
+ <td>gsm8k</td><td>en</td><td>78.54</td><td>79.76</td><td>52.54</td><td>71.11</td><td>73.09</td><td>56.25</td><td>75.51</td>
159
+ </tr>
160
+ <tr>
161
+ <td rowspan="2">Overall</td>
162
+ <td>avg_zh</td><td></td><td>70.35</td><td>71.58</td><td>71.35</td><td>68.39</td><td>51.13</td><td>57.62</td><td><strong>71.74</strong></td>
163
+ </tr>
164
+ <tr>
165
+ <td>avg_all</td><td></td><td>73.11</td><td>71.78</td><td>69.60</td><td>68.88</td><td>61.60</td><td>62.32</td><td>70.61</td>
166
+ </tr>
167
+ </table>
168
+
169
+
170
+ <br>
171
+
172
+ # Quickstart
173
+ We provide simple examples illustrating the use of 360Zhinao2-7B-Base and 360Zhinao2-7B-Chat on 🤖ModelScope and 🤗Transformers.
174
+
175
+ ## Dependency Installation
176
+ - python >= 3.8
177
+ - pytorch >= 2.0
178
+ - transformers >= 4.37.2
179
+ - CUDA >= 11.4
180
+
181
+ ```shell
182
+ pip install -r requirements.txt
183
+ ```
184
+
185
+ Optionally, we recommend installing Flash-Attention 2 to improve performance and reduce memory footprint.
186
+
187
+ >flash-attn >= 2.3.6
188
+ ```shell
189
+ FLASH_ATTENTION_FORCE_BUILD=TRUE pip install flash-attn==2.3.6
190
+ ```
191
+
192
+ ## 🤗 Transformers
193
+ ### Demonstration of Base Model Inference
194
+
195
+ ```python
196
+ from transformers import AutoTokenizer, AutoModelForCausalLM
197
+ from transformers.generation import GenerationConfig
198
+
199
+ MODEL_NAME_OR_PATH = "qihoo360/360Zhinao2-7B-Base"
200
+
201
+ tokenizer = AutoTokenizer.from_pretrained(
202
+ MODEL_NAME_OR_PATH,
203
+ trust_remote_code=True)
204
+
205
+ model = AutoModelForCausalLM.from_pretrained(
206
+ MODEL_NAME_OR_PATH,
207
+ device_map="auto",
208
+ trust_remote_code=True)
209
+
210
+ generation_config = GenerationConfig.from_pretrained(
211
+ MODEL_NAME_OR_PATH,
212
+ trust_remote_code=True)
213
+
214
+ inputs = tokenizer('中国二十四节气\n1. 立春\n2. 雨水\n3. 惊蛰\n4. 春分\n5. 清明\n', return_tensors='pt')
215
+ inputs = inputs.to(model.device)
216
+
217
+ pred = model.generate(input_ids=inputs["input_ids"], generation_config=generation_config)
218
+ print("outputs:\n", tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
219
+ ```
220
+ ### Demonstration of Chat Model Inference
221
+
222
+ ```python
223
+ from transformers import AutoTokenizer, AutoModelForCausalLM
224
+ from transformers.generation import GenerationConfig
225
+
226
+ MODEL_NAME_OR_PATH = "qihoo360/360Zhinao2-7B-Chat-4K"
227
+
228
+ tokenizer = AutoTokenizer.from_pretrained(
229
+ MODEL_NAME_OR_PATH,
230
+ trust_remote_code=True)
231
+
232
+ model = AutoModelForCausalLM.from_pretrained(
233
+ MODEL_NAME_OR_PATH,
234
+ device_map="auto",
235
+ trust_remote_code=True)
236
+
237
+ generation_config = GenerationConfig.from_pretrained(
238
+ MODEL_NAME_OR_PATH,
239
+ trust_remote_code=True)
240
+
241
+ messages = []
242
+ #round-1
243
+ messages.append({"role": "user", "content": "介绍一下刘德华"})
244
+ response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
245
+ messages.append({"role": "assistant", "content": response})
246
+ print(messages)
247
+
248
+ #round-2
249
+ messages.append({"role": "user", "content": "他有什么代表作?"})
250
+ response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
251
+ messages.append({"role": "assistant", "content": response})
252
+ print(messages)
253
+ ```
254
+
255
+ ## 🤖 ModelScope
256
+ ### Demonstration of Base Model Inference
257
+
258
+ ```python
259
+ from modelscope import AutoModelForCausalLM, AutoTokenizer
260
+ from modelscope import GenerationConfig
261
+
262
+ MODEL_NAME_OR_PATH = "qihoo360/360Zhinao2-7B-Base"
263
+
264
+ tokenizer = AutoTokenizer.from_pretrained(
265
+ MODEL_NAME_OR_PATH,
266
+ trust_remote_code=True)
267
+
268
+ model = AutoModelForCausalLM.from_pretrained(
269
+ MODEL_NAME_OR_PATH,
270
+ device_map="auto",
271
+ trust_remote_code=True)
272
+
273
+ generation_config = GenerationConfig.from_pretrained(
274
+ MODEL_NAME_OR_PATH,
275
+ trust_remote_code=True)
276
+
277
+ inputs = tokenizer('中国二十四节气\n1. 立春\n2. 雨水\n3. 惊蛰\n4. 春分\n5. 清明\n', return_tensors='pt')
278
+ inputs = inputs.to(model.device)
279
+
280
+ pred = model.generate(input_ids=inputs["input_ids"], generation_config=generation_config)
281
+ print("outputs:\n", tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
282
+ ```
283
+
284
+ ### Demonstration of Chat Model Inference
285
+
286
+ ```python
287
+ from modelscope import AutoModelForCausalLM, AutoTokenizer
288
+ from modelscope import GenerationConfig
289
+
290
+ MODEL_NAME_OR_PATH = "qihoo360/360Zhinao2-7B-Chat-4K"
291
+
292
+ tokenizer = AutoTokenizer.from_pretrained(
293
+ MODEL_NAME_OR_PATH,
294
+ trust_remote_code=True)
295
+
296
+ model = AutoModelForCausalLM.from_pretrained(
297
+ MODEL_NAME_OR_PATH,
298
+ device_map="auto",
299
+ trust_remote_code=True)
300
+
301
+ generation_config = GenerationConfig.from_pretrained(
302
+ MODEL_NAME_OR_PATH,
303
+ trust_remote_code=True)
304
+
305
+ messages = []
306
+ #round-1
307
+ messages.append({"role": "user", "content": "介绍一下刘德华"})
308
+ response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
309
+ messages.append({"role": "assistant", "content": response})
310
+ print(messages)
311
+
312
+ #round-2
313
+ messages.append({"role": "user", "content": "他有什么代表作?"})
314
+ response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
315
+ messages.append({"role": "assistant", "content": response})
316
+ print(messages)
317
+ ```
318
+
319
+ ## CLI Demo
320
+ Use terminal for command-line interface:
321
+
322
+ ```shell
323
+ python cli_demo.py
324
+ ```
325
+ <p align="center">
326
+ <img src="assets/cli_demo.gif" width="600" />
327
+ <p>
328
+
329
+ Note: for Mac users, `device = 'mps'` is not supported yet.
330
+
331
+ ## Web Demo
332
+
333
+ ```shell
334
+ streamlit run web_demo.py
335
+ ```
336
+ <p align="center">
337
+ <img src="assets/web_demo.gif" width="600" />
338
+ <p>
339
+
340
+ ## API Demo
341
+ Launch api:
342
+ ```shell
343
+ python openai_api.py
344
+ ```
345
+
346
+ Then request with parameters:
347
+ ```shell
348
+ curl 'http://localhost:8360/v1/chat/completions' \
349
+ -H 'Content-Type: application/json' \
350
+ -d '{
351
+ "max_new_tokens": 200,
352
+ "do_sample": true,
353
+ "top_k": 0,
354
+ "top_p": 0.8,
355
+ "temperature": 1.0,
356
+ "repetition_penalty": 1.0,
357
+ "messages": [
358
+ {"role": "system", "content": "You are a helpful assistant."},
359
+ {"role": "user", "content": "你好"}
360
+ ]
361
+ }'
362
+ ```
363
+
364
+ <br>
365
+
366
+ # Model Inference
367
+ ## Quantization
368
+ We provide quantization schemes based on AutoGPTQ and release the Int4 quantization models.
369
+
370
+ ## Deployment
371
+ ### vLLM Installation
372
+ We recommend using `vLLM==0.3.3`.
373
+
374
+ If you are using **CUDA 12.1 and PyTorch 2.1**, you can install vLLM directly with:
375
+ ```shell
376
+ pip install vllm==0.3.3
377
+ ```
378
+
379
+ Otherwise, please refer to the official vLLM [Installation Instructions](https://docs.vllm.ai/en/latest/getting_started/installation.html).
380
+
381
+ After installation, perform the following steps:
382
+ 1. Copy `vllm/zhinao.py` into `vllm/model_executor/models` in your vllm installation directory (in python/conda env).
383
+ 2. Copy `vllm/serving_chat.py` into `vllm/entrypoints/openai` in your vllm installation directory.
384
+ 3. Then add a line in `vllm/model_executor/models/__init__.py`
385
+
386
+ ```shell
387
+ "ZhinaoForCausalLM": ("zhinao", "ZhinaoForCausalLM"),
388
+ ```
389
+
390
+ ### vLLM Service Start
391
+
392
+ Start the service:
393
+ ```shell
394
+ python -m vllm.entrypoints.openai.api_server \
395
+ --served-model-name 360Zhinao2-7B-Chat-4K \
396
+ --model qihoo360/360Zhinao2-7B-Chat-4K \
397
+ --trust-remote-code \
398
+ --tensor-parallel-size 1 \
399
+ --max-model-len 4096 \
400
+ --host 0.0.0.0 \
401
+ --port 8360
402
+ ```
403
+
404
+ Use curl to request the service:
405
+ ```shell
406
+ curl http://localhost:8360/v1/chat/completions \
407
+ -H "Content-Type: application/json" \
408
+ -d '{
409
+ "model": "360Zhinao2-7B-Chat-4K",
410
+ "max_tokens": 200,
411
+ "top_k": -1,
412
+ "top_p": 0.8,
413
+ "temperature": 1.0,
414
+ "presence_penalty": 0.0,
415
+ "frequency_penalty": 0.0,
416
+ "messages": [
417
+ {"role": "system", "content": "You are a helpful assistant."},
418
+ {"role": "user", "content": "你好"}
419
+ ],
420
+ "stop": [
421
+ "<eod>",
422
+ "<|im_end|>",
423
+ "<|im_start|>"
424
+ ]
425
+ }'
426
+ ```
427
+ Use python to request the service:
428
+ ```python
429
+ from openai import OpenAI
430
+ openai_api_key = "EMPTY"
431
+ openai_api_base = "http://localhost:8360/v1"
432
+
433
+ client = OpenAI(
434
+ api_key=openai_api_key,
435
+ base_url=openai_api_base,
436
+ )
437
+
438
+ chat_response = client.chat.completions.create(
439
+ model="360Zhinao2-7B-Chat-4K",
440
+ messages=[
441
+ {"role": "system", "content": "You are a helpful assistant."},
442
+ {"role": "user", "content": "你好"},
443
+ ],
444
+ stop=[
445
+ "<eod>",
446
+ "<|im_end|>",
447
+ "<|im_start|>"
448
+ ],
449
+ presence_penalty=0.0,
450
+ frequency_penalty=0.0
451
+ )
452
+ print("Chat response:", chat_response)
453
+ ```
454
+
455
+ > If you need to enable repetition penalty, we recommend setting `presence_penalty` and `frequency_penalty` instead of `repetition_penalty`.
456
+
457
+
458
+ <br>
459
+
460
+ # Model Finetune
461
+ ## Training data
462
+
463
+ Training Data: `data/training_data_sample.json`. This example data has 10,000 rows sampled from [multiturn_chat_0.8M](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M) with converted format.
464
+
465
+ Data Format:
466
+ ```json
467
+ [
468
+ {
469
+ "id": 1,
470
+ "conversations": [
471
+ {
472
+ "from": "system",
473
+ "value": "You are a helpful assistant."
474
+ },
475
+ {
476
+ "from": "user",
477
+ "value": "您好啊"
478
+ },
479
+ {
480
+ "from": "assistant",
481
+ "value": "你好!我今天能为您做些什么?有什么问题或需要帮助吗? 我在这里为您提供服务。"
482
+ }
483
+ ]
484
+ }
485
+ ]
486
+ ```
487
+ ## Finetuning scripts
488
+ ```shell
489
+ set -x
490
+
491
+ HOSTFILE=hostfile
492
+ DS_CONFIG=./finetune/ds_config_zero2.json
493
+
494
+ # PARAMS
495
+ LR=5e-6
496
+ EPOCHS=3
497
+ MAX_LEN=4096
498
+ BATCH_SIZE=4
499
+ NUM_NODES=1
500
+ NUM_GPUS=8
501
+ MASTER_PORT=29500
502
+
503
+ IS_CONCAT=False # Whether to concatenate to maximum length (MAX_LEN)
504
+
505
+ DATA_PATH="./data/training_data_sample.json"
506
+ MODEL_PATH="qihoo360/360Zhinao2-7B-Base"
507
+ OUTPUT_DIR="./outputs/"
508
+
509
+ deepspeed --hostfile ${HOSTFILE} \
510
+ --master_port ${MASTER_PORT} \
511
+ --num_nodes ${NUM_NODES} \
512
+ --num_gpus ${NUM_GPUS} \
513
+ finetune.py \
514
+ --report_to "tensorboard" \
515
+ --data_path ${DATA_PATH} \
516
+ --model_name_or_path ${MODEL_PATH} \
517
+ --output_dir ${OUTPUT_DIR} \
518
+ --model_max_length ${MAX_LEN} \
519
+ --num_train_epochs ${EPOCHS} \
520
+ --per_device_train_batch_size ${BATCH_SIZE} \
521
+ --gradient_accumulation_steps 1 \
522
+ --save_strategy steps \
523
+ --save_steps 200 \
524
+ --learning_rate ${LR} \
525
+ --lr_scheduler_type cosine \
526
+ --adam_beta1 0.9 \
527
+ --adam_beta2 0.95 \
528
+ --adam_epsilon 1e-8 \
529
+ --max_grad_norm 1.0 \
530
+ --weight_decay 0.1 \
531
+ --warmup_ratio 0.01 \
532
+ --gradient_checkpointing True \
533
+ --bf16 True \
534
+ --tf32 True \
535
+ --deepspeed ${DS_CONFIG} \
536
+ --is_concat ${IS_CONCAT} \
537
+ --logging_steps 1 \
538
+ --log_on_each_node False
539
+ ```
540
+ ```shell
541
+ bash finetune/ds_finetune.sh
542
+ ```
543
+ - Configuring `HOSTFILE` switches between single-machine and multi-machine training.
544
+ - configuring `ds_config` switches between zero1, zero2 and zero3.
545
+ - `fp16, bf16` could configure mixed precision training. bf16 is recommended to be consistent with the pretrained model.
546
+ - `is_concat` configures whether the training data is concatenated or not.
547
+
548
+ <br>
549
+
550
+ # License
551
+
552
+ The source code of this repository follows the open-source license Apache 2.0.
553
+
554
+ 360​Zhinao open-source models support free commercial use. It is not necessary for you to submit a request for commercial usage.
README_CN.md ADDED
@@ -0,0 +1,564 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - zh
5
+ - en
6
+ library_name: transformers
7
+ tags:
8
+ - qihoo360
9
+ - 奇虎360
10
+ - zhinao
11
+ - 360Zhinao
12
+ - pretrain
13
+ ---
14
+
15
+ <p align="left">
16
+ 中文 | &nbsp <a href="./README.md">English</a></a>&nbsp
17
+ </p>
18
+ <br>
19
+
20
+ <div align="center">
21
+ <h1>
22
+ 360智脑
23
+ </h1>
24
+ </div>
25
+ <div align="center">
26
+ 🤗 <a href="https://huggingface.co/qihoo360">Hugging Face</a>&nbsp&nbsp | &nbsp&nbsp
27
+ 🤖 <a href="https://www.modelscope.cn/profile/qihoo360">ModelScope</a>&nbsp&nbsp | &nbsp&nbsp
28
+ 💬 <a href="./assets/WeChat.png">WeChat (微信)</a>&nbsp&nbsp
29
+ </div>
30
+ <br>
31
+ <p align="center">
32
+ 欢迎访问360智脑官网<a href="https://ai.360.com"> https://ai.360.com </a>体验更多更强大的功能。
33
+ </p>
34
+
35
+ <br>
36
+
37
+ # 模型介绍
38
+ 🎉🎉🎉我们开源了360智脑大模型的系列工作,本次开源了以下模型:
39
+ - **360Zhinao2-7B-Base**
40
+ - **360Zhinao2-7B-Chat-4K**
41
+ - **360Zhinao2-7B-Chat-32K**
42
+ - **360Zhinao2-7B-Chat-360K**
43
+
44
+ 360智脑大模型特点如下:
45
+ - **基础模型**:采⽤当前主流的两阶段训练⽅法,第⼀阶段采用cosine学习率总共训练10T
46
+ token,第二阶段我们加⼤了⾼质量数据的占⽐,训练了100B⾼质量token,学习率LR直接decay到0。**360Zhinao2-7B总共训练数据量达10.1T token**。
47
+ - **对话模型**:具有强大的对话能力,开放4K、32K、360K三种不同文本长度。
48
+
49
+ <br>
50
+
51
+ # 更新信息
52
+ - [2024.11.18] 🔥🔥🔥我们发布了360Zhinao2-7B,同时开放Base模型和4K、32K、360K三种文本长度的Chat模型。
53
+ - [2024.05.23] 我们发布了360Zhinao-search以及360Zhinao-1.8B-Reranking两个模型,分别在[C-MTEB 榜单](https://huggingface.co/spaces/mteb/leaderboard)的Retrieval和Reranking任务上排名第一。
54
+ - [2024.05.20] 我们将llama3的窗口长度扩展到360k并发布了**llama3-8B-360Zhinao-360k-Instruct**<a href="https://huggingface.co/qihoo360/llama3-8B-360Zhinao-360k-Instruct">🤗</a>
55
+ - [2024.04.12] 我们发布了360Zhinao-7B 1.0版本,同时开放Base模型和4K、32K、360K三种文本长度的Chat模型。
56
+ 技术报告详见[arXiv](https://arxiv.org/abs/2405.13386)。
57
+
58
+ <br>
59
+
60
+ # 目录
61
+ - [下载地址](#下载地址)
62
+ - [模型评估](#模型评估)
63
+ - [快速开始](#快速开始)
64
+ - [模型推理](#模型推理)
65
+ - [模型微调](#模型微调)
66
+ - [许可证](#许可证)
67
+
68
+ <br>
69
+
70
+ # 下载地址
71
+ 本次发布版本和下载链接见下表:
72
+ | Size | Model | BF16 | Int4|
73
+ |:-:|-|:-:|:-:|
74
+ | 7B | 360Zhinao2-7B-Base | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Base/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Base">🤗</a> | |
75
+ | 7B | 360Zhinao2-7B-Chat-4K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-4K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-4K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-4K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-4K-Int4">🤗</a> |
76
+ | 7B | 360Zhinao2-7B-Chat-32K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-32K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-32K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-32K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-32K-Int4">🤗</a> |
77
+ | 7B | 360Zhinao2-7B-Chat-360K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-360K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-360K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-360K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-360K-Int4">🤗</a> |
78
+
79
+ <br>
80
+
81
+ # 模型评估
82
+ 我们使⽤了开源⼯具opencompass对模型进⾏评估,对⽐了近半年国内外开源的10B以下模型,
83
+ 360Zhinao2-7B具备较强的竞争⼒。360Zhinao2-7B在CEval(中⽂
84
+ 考试)、C3(中⽂阅读理解)、lcsts(中⽂短⽂本摘要)等中⽂benchmark上表现不俗,中⽂
85
+ benchmark均分排名第⼀。在挑战性的竞赛数学数据集math上,同样排名第⼀。**360Zhinao2-7B模
86
+ 型在中⽂处理能⼒、复杂数学推理能⼒两个⽅⾯,具备优势。**
87
+
88
+ <table>
89
+ <tr>
90
+ <td>Type</td><td>Datasets</td><td>language</td><td>glm4-9b</td><td>Qwen2.5-7B</td><td>internlm2.5-7b</td><td>Yi1.5-9B</td><td>gemma2-9b</td><td>Llama3.1-8B</td><td>360Zhinao2-7B</td>
91
+ </tr>
92
+ <tr>
93
+ <td rowspan="5">Exam</td><td>ceval</td><td>zh</td><td>75.83</td><td>81.41</td><td>77.71</td><td>73.51</td><td>56.36</td><td>51.67</td><td><strong>83.04</strong></td>
94
+ </tr>
95
+ <tr>
96
+ <td>mmlu</td><td>en</td><td>75.5</td><td>75.5</td><td>71.55</td><td>71.43</td><td>72.22</td><td>66.75</td><td>67.84</td>
97
+ </tr>
98
+ <tr>
99
+ <td>cmmlu</td><td>zh</td><td>74.24</td><td>81.79</td><td>78.77</td><td>74.2</td><td>58.89</td><td>52.49</td><td>73.8</td>
100
+ </tr>
101
+ <tr>
102
+ <td>ARC-c</td><td>en</td><td>94.92</td><td>80</td><td>85.08</td><td>87.46</td><td>77.63</td><td>80.68</td><td>87.12</td>
103
+ </tr>
104
+ <tr>
105
+ <td>ARC-e</td><td>en</td><td>98.41</td><td>84.83</td><td>95.24</td><td>94.53</td><td>78.84</td><td>89.77</td><td>92.77</td>
106
+ </tr>
107
+ <tr>
108
+ <td rowspan="2">Language</td><td>WiC</td><td>en</td><td>51.57</td><td>52.82</td><td>50.78</td><td>50.63</td><td>50.47</td><td>50</td><td>49.84</td>
109
+ </tr>
110
+ <tr>
111
+ <td>WSC</td><td>en</td><td>68.27</td><td>68.27</td><td>69.23</td><td>66.35</td><td>68.27</td><td>67.31</td><td>65.38</td>
112
+ </tr>
113
+ <tr>
114
+ <td rowspan="2">Knowledge</td>
115
+ <td>BoolQ</td><td>en</td><td>81.8</td><td>83.88</td><td>89.51</td><td>84.46</td><td>85.6</td><td>82.2</td><td>88.29</td>
116
+ </tr>
117
+ <tr>
118
+ <td>commonsense_qa</td><td>en</td><td>71.17</td><td>73.22</td><td>68.55</td><td>71.58</td><td>68.47</td><td>71.25</td><td>69.78</td>
119
+ </tr>
120
+ <tr>
121
+ <td rowspan="6">Understanding</td>
122
+ <td>C3</td><td>zh</td><td>91.51</td><td>92</td><td>93.04</td><td>85.86</td><td>81.64</td><td>83.51</td><td><strong>93.26</strong></td>
123
+ </tr>
124
+ <tr>
125
+ <td>race-middle</td><td>en</td><td>91.99</td><td>91.02</td><td>92.06</td><td>91.16</td><td>88.09</td><td>81.69</td><td>90.46</td>
126
+ </tr>
127
+ <tr>
128
+ <td>race-high</td><td>en</td><td>90.71</td><td>87.91</td><td>90.08</td><td>88.34</td><td>82.08</td><td>78.73</td><td>86.74</td>
129
+ </tr>
130
+ <tr>
131
+ <td>lcsts</td><td>zh</td><td>18.29</td><td>15.82</td><td>15.96</td><td>16.49</td><td>10.62</td><td>17.29</td><td><strong>18.61</strong></td>
132
+ </tr>
133
+ <tr>
134
+ <td>eprstmt-dev</td><td>zh</td><td>91.88</td><td>86.88</td><td>91.25</td><td>91.88</td><td>48.12</td><td>83.12</td><td>90</td>
135
+ </tr>
136
+ <tr>
137
+ <td>lambada</td><td>en</td><td>71.67</td><td>71.14</td><td>69.98</td><td>70.64</td><td>75.43</td><td>74.23</td><td>72.56</td>
138
+ </tr>
139
+ <tr>
140
+ <td rowspan="3">Reasoning</td>
141
+ <td>hellaswag</td><td>en</td><td>70.25</td><td>72.76</td><td>70.38</td><td>71.55</td><td>66.83</td><td>74.65</td><td>71.49</td>
142
+ </tr>
143
+ <tr>
144
+ <td>siqa</td><td>en</td><td>81.73</td><td>72.52</td><td>78.97</td><td>76.2</td><td>58.96</td><td>64.18</td><td>77.12</td>
145
+ </tr>
146
+ <tr>
147
+ <td>bbh</td><td>en</td><td>73.68</td><td>54.63</td><td>59.43</td><td>67.86</td><td>68.45</td><td>59.9</td><td>46.54</td>
148
+ </tr>
149
+ <tr>
150
+ <td rowspan="2">Code</td>
151
+ <td>humaneval</td><td>en</td><td>69.51</td><td>75</td><td>60.37</td><td>26.22</td><td>5.49</td><td>27.44</td><td>60.98</td>
152
+ </tr>
153
+ <tr>
154
+ <td>mbpp</td><td>en</td><td>60</td><td>60</td><td>43.6</td><td>56.8</td><td>51.2</td><td>42.6</td><td>54</td>
155
+ </tr>
156
+ <tr>
157
+ <td rowspan="2">Math</td>
158
+ <td>math</td><td>en</td><td>26.86</td><td>38</td><td>27.14</td><td>27.06</td><td>28.52</td><td>15.32</td><td><strong>38.34</strong></td>
159
+ </tr>
160
+ <tr>
161
+ <td>gsm8k</td><td>en</td><td>78.54</td><td>79.76</td><td>52.54</td><td>71.11</td><td>73.09</td><td>56.25</td><td>75.51</td>
162
+ </tr>
163
+ <tr>
164
+ <td rowspan="2">Overall</td>
165
+ <td>avg_zh</td><td></td><td>70.35</td><td>71.58</td><td>71.35</td><td>68.39</td><td>51.13</td><td>57.62</td><td><strong>71.74</strong></td>
166
+ </tr>
167
+ <tr>
168
+ <td>avg_all</td><td></td><td>73.11</td><td>71.78</td><td>69.60</td><td>68.88</td><td>61.60</td><td>62.32</td><td>70.61</td>
169
+ </tr>
170
+ </table>
171
+
172
+ ## 基础模型
173
+
174
+ # 快速开始
175
+ 简单的示例来说明如何利用🤖 ModelScope和🤗 Transformers快速使用360Zhinao2-7B-Base和360Zhinao2-7B-Chat
176
+
177
+ ## 依赖安装
178
+ - python 3.8 and above
179
+ - pytorch 2.0 and above
180
+ - transformers 4.37.2 and above
181
+ - CUDA 11.4 and above are recommended.
182
+
183
+ ```shell
184
+ pip install -r requirements.txt
185
+ ```
186
+ 我们推荐安装flash-attention(当前已支持flash attention 2)来提高你的运行效率以及降低显存占用。(flash-attention只是可选项,不安装也可正常运行该项目)
187
+
188
+ >flash-attn >= 2.3.6
189
+ ```shell
190
+ FLASH_ATTENTION_FORCE_BUILD=TRUE pip install flash-attn==2.3.6
191
+ ```
192
+
193
+
194
+ ## 🤗 Transformers
195
+ ### Base模型推理
196
+
197
+ 此代码演示使用transformers快速使用360Zhinao2-7B-Base模型进行推理
198
+ ```python
199
+ from transformers import AutoTokenizer, AutoModelForCausalLM
200
+ from transformers.generation import GenerationConfig
201
+
202
+ MODEL_NAME_OR_PATH = "qihoo360/360Zhinao2-7B-Base"
203
+
204
+ tokenizer = AutoTokenizer.from_pretrained(
205
+ MODEL_NAME_OR_PATH,
206
+ trust_remote_code=True)
207
+
208
+ model = AutoModelForCausalLM.from_pretrained(
209
+ MODEL_NAME_OR_PATH,
210
+ device_map="auto",
211
+ trust_remote_code=True)
212
+
213
+ generation_config = GenerationConfig.from_pretrained(
214
+ MODEL_NAME_OR_PATH,
215
+ trust_remote_code=True)
216
+
217
+ inputs = tokenizer('中国二十四节气\n1. 立春\n2. 雨水\n3. 惊蛰\n4. 春分\n5. 清明\n', return_tensors='pt')
218
+ inputs = inputs.to(model.device)
219
+
220
+ pred = model.generate(input_ids=inputs["input_ids"], generation_config=generation_config)
221
+ print("outputs:\n", tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
222
+ ```
223
+
224
+ ### Chat模型推理
225
+
226
+ 此代码演示使用transformers快速使用360Zhinao2-7B-Chat-4K模型进行推理
227
+ ```python
228
+ from transformers import AutoTokenizer, AutoModelForCausalLM
229
+ from transformers.generation import GenerationConfig
230
+
231
+ MODEL_NAME_OR_PATH = "qihoo360/360Zhinao2-7B-Chat-4K"
232
+
233
+ tokenizer = AutoTokenizer.from_pretrained(
234
+ MODEL_NAME_OR_PATH,
235
+ trust_remote_code=True)
236
+
237
+ model = AutoModelForCausalLM.from_pretrained(
238
+ MODEL_NAME_OR_PATH,
239
+ device_map="auto",
240
+ trust_remote_code=True)
241
+
242
+ generation_config = GenerationConfig.from_pretrained(
243
+ MODEL_NAME_OR_PATH,
244
+ trust_remote_code=True)
245
+
246
+ messages = []
247
+ #round-1
248
+ messages.append({"role": "user", "content": "介绍一下刘德华"})
249
+ response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
250
+ messages.append({"role": "assistant", "content": response})
251
+ print(messages)
252
+
253
+ #round-2
254
+ messages.append({"role": "user", "content": "他有什么代表作?"})
255
+ response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
256
+ messages.append({"role": "assistant", "content": response})
257
+ print(messages)
258
+ ```
259
+
260
+ ## 🤖 ModelScope
261
+ ### Base模型推理
262
+
263
+ 此代码演示使用ModelScope快速使用360Zhinao2-7B-Base模型进行推理
264
+
265
+
266
+ ```python
267
+ from modelscope import AutoModelForCausalLM, AutoTokenizer
268
+ from modelscope import GenerationConfig
269
+
270
+ MODEL_NAME_OR_PATH = "qihoo360/360Zhinao2-7B-Base"
271
+
272
+ tokenizer = AutoTokenizer.from_pretrained(
273
+ MODEL_NAME_OR_PATH,
274
+ trust_remote_code=True)
275
+
276
+ model = AutoModelForCausalLM.from_pretrained(
277
+ MODEL_NAME_OR_PATH,
278
+ device_map="auto",
279
+ trust_remote_code=True)
280
+
281
+ generation_config = GenerationConfig.from_pretrained(
282
+ MODEL_NAME_OR_PATH,
283
+ trust_remote_code=True)
284
+
285
+ inputs = tokenizer('中国二十四节气\n1. 立春\n2. 雨水\n3. 惊蛰\n4. 春分\n5. 清明\n', return_tensors='pt')
286
+ inputs = inputs.to(model.device)
287
+
288
+ pred = model.generate(input_ids=inputs["input_ids"], generation_config=generation_config)
289
+ print("outputs:\n", tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
290
+ ```
291
+
292
+ ### Chat模型推理
293
+
294
+ 此代码演示使用ModelScope快速使用360Zhinao2-7B-Chat-4K模型进行推理
295
+ ```python
296
+ from modelscope import AutoModelForCausalLM, AutoTokenizer
297
+ from modelscope import GenerationConfig
298
+
299
+ MODEL_NAME_OR_PATH = "qihoo360/360Zhinao2-7B-Chat-4K"
300
+
301
+ tokenizer = AutoTokenizer.from_pretrained(
302
+ MODEL_NAME_OR_PATH,
303
+ trust_remote_code=True)
304
+
305
+ model = AutoModelForCausalLM.from_pretrained(
306
+ MODEL_NAME_OR_PATH,
307
+ device_map="auto",
308
+ trust_remote_code=True)
309
+
310
+ generation_config = GenerationConfig.from_pretrained(
311
+ MODEL_NAME_OR_PATH,
312
+ trust_remote_code=True)
313
+
314
+ messages = []
315
+ #round-1
316
+ messages.append({"role": "user", "content": "介绍一下刘德华"})
317
+ response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
318
+ messages.append({"role": "assistant", "content": response})
319
+ print(messages)
320
+
321
+ #round-2
322
+ messages.append({"role": "user", "content": "他有什么代表作?"})
323
+ response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
324
+ messages.append({"role": "assistant", "content": response})
325
+ print(messages)
326
+ ```
327
+
328
+ ## 终端 Demo
329
+ 可使用终端交互实现快速体验
330
+ ```shell
331
+ python cli_demo.py
332
+ ```
333
+ <p align="center">
334
+ <img src="assets/cli_demo.gif" width="600" />
335
+ <p>
336
+
337
+ 注:我们尚未支持Mac上`device = 'mps'`。
338
+
339
+ ## 网页 Demo
340
+ 也可使用网页交互实现快速体验
341
+ ```shell
342
+ streamlit run web_demo.py
343
+ ```
344
+ <p align="center">
345
+ <img src="assets/web_demo.gif" width="600" />
346
+ <p>
347
+
348
+ ## API Demo
349
+ 启动命令
350
+ ```shell
351
+ python openai_api.py
352
+ ```
353
+
354
+ 请求参数
355
+ ```shell
356
+ curl 'http://localhost:8360/v1/chat/completions' \
357
+ -H 'Content-Type: application/json' \
358
+ -d '{
359
+ "max_new_tokens": 200,
360
+ "do_sample": true,
361
+ "top_k": 0,
362
+ "top_p": 0.8,
363
+ "temperature": 1.0,
364
+ "repetition_penalty": 1.0,
365
+ "messages": [
366
+ {"role": "system", "content": "You are a helpful assistant."},
367
+ {"role": "user", "content": "你好"}
368
+ ]
369
+ }'
370
+ ```
371
+
372
+ <br>
373
+
374
+ # 模型推理
375
+ ## 模型量化
376
+ 我们提供了基于AutoGPTQ的量化方案,并开源了Int4量化模型。
377
+
378
+ ## 模型部署
379
+ ### vLLM安装环境
380
+ 如希望部署及加速推理,我们建议你使用 `vLLM==0.3.3`。
381
+
382
+ 如果你使用**CUDA 12.1和PyTorch 2.1**,可以直接使用以下命令安装vLLM。
383
+ ```shell
384
+ pip install vllm==0.3.3
385
+ ```
386
+
387
+ 否则请参考vLLM官方的[安装说明](https://docs.vllm.ai/en/latest/getting_started/installation.html)。
388
+
389
+ >安装完成后,还需要以下操作~
390
+ 1. 把vllm/zhinao.py文件复制到env环境对应的vllm/model_executor/models目录下。
391
+ 2. 把vllm/serving_chat.py文件复制到env环境对应的vllm/entrypoints/openai目录下。
392
+ 3. 然后在vllm/model_executor/models/\_\_init\_\_.py文件增加一行代码
393
+
394
+ ```shell
395
+ "ZhinaoForCausalLM": ("zhinao", "ZhinaoForCausalLM"),
396
+ ```
397
+
398
+ ### vLLM服务启动
399
+
400
+ 启动服务
401
+ ```shell
402
+ python -m vllm.entrypoints.openai.api_server \
403
+ --served-model-name 360Zhinao2-7B-Chat-4K \
404
+ --model qihoo360/360Zhinao2-7B-Chat-4K \
405
+ --trust-remote-code \
406
+ --tensor-parallel-size 1 \
407
+ --max-model-len 4096 \
408
+ --host 0.0.0.0 \
409
+ --port 8360
410
+ ```
411
+
412
+ 使用curl请求服务
413
+ ```shell
414
+ curl http://localhost:8360/v1/chat/completions \
415
+ -H "Content-Type: application/json" \
416
+ -d '{
417
+ "model": "360Zhinao2-7B-Chat-4K",
418
+ "max_tokens": 200,
419
+ "top_k": -1,
420
+ "top_p": 0.8,
421
+ "temperature": 1.0,
422
+ "presence_penalty": 0.0,
423
+ "frequency_penalty": 0.0,
424
+ "messages": [
425
+ {"role": "system", "content": "You are a helpful assistant."},
426
+ {"role": "user", "content": "你好"}
427
+ ],
428
+ "stop": [
429
+ "<eod>",
430
+ "<|im_end|>",
431
+ "<|im_start|>"
432
+ ]
433
+ }'
434
+ ```
435
+ 使用python请求服务
436
+ ```python
437
+ from openai import OpenAI
438
+ # Set OpenAI's API key and API base to use vLLM's API server.
439
+ openai_api_key = "EMPTY"
440
+ openai_api_base = "http://localhost:8360/v1"
441
+
442
+ client = OpenAI(
443
+ api_key=openai_api_key,
444
+ base_url=openai_api_base,
445
+ )
446
+
447
+ chat_response = client.chat.completions.create(
448
+ model="360Zhinao2-7B-Chat-4K",
449
+ messages=[
450
+ {"role": "system", "content": "You are a helpful assistant."},
451
+ {"role": "user", "content": "你好"},
452
+ ],
453
+ stop=[
454
+ "<eod>",
455
+ "<|im_end|>",
456
+ "<|im_start|>"
457
+ ],
458
+ presence_penalty=0.0,
459
+ frequency_penalty=0.0
460
+ )
461
+ print("Chat response:", chat_response)
462
+ ```
463
+
464
+ > 注意:如需要开启重复惩罚,建议使用 *presence_penalty* 和 *frequency_penalty* 参数。
465
+
466
+ <br>
467
+
468
+ # 模型微调
469
+ ## 训练数据
470
+
471
+ 我们提供了微调训练样例数据 data/test.json,该样例数据是从 [multiturn_chat_0.8M](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M) 采样出 1 万条,并且做了格式转换。
472
+
473
+ 数据格式:
474
+ ```json
475
+ [
476
+ {
477
+ "id": 1,
478
+ "conversations": [
479
+ {
480
+ "from": "system",
481
+ "value": "You are a helpful assistant."
482
+ },
483
+ {
484
+ "from": "user",
485
+ "value": "您好啊"
486
+ },
487
+ {
488
+ "from": "assistant",
489
+ "value": "你好!我今天能为您做些什么?有什么问题或需要帮助吗? 我在这里为您提供服务。"
490
+ }
491
+ ]
492
+ }
493
+ ]
494
+ ```
495
+
496
+ ## 微调训练
497
+ 训练脚本如下:
498
+ ```shell
499
+ set -x
500
+
501
+ HOSTFILE=hostfile
502
+ DS_CONFIG=./finetune/ds_config_zero2.json
503
+
504
+ # PARAMS
505
+ LR=5e-6
506
+ EPOCHS=3
507
+ MAX_LEN=4096
508
+ BATCH_SIZE=4
509
+ NUM_NODES=1
510
+ NUM_GPUS=8
511
+ MASTER_PORT=29500
512
+
513
+ IS_CONCAT=False # 是否数据拼接到最大长度(MAX_LEN)
514
+
515
+ DATA_PATH="./data/training_data_sample.json"
516
+ MODEL_PATH="qihoo360/360Zhinao2-7B-Base"
517
+ OUTPUT_DIR="./outputs/"
518
+
519
+ deepspeed --hostfile ${HOSTFILE} \
520
+ --master_port ${MASTER_PORT} \
521
+ --num_nodes ${NUM_NODES} \
522
+ --num_gpus ${NUM_GPUS} \
523
+ finetune.py \
524
+ --report_to "tensorboard" \
525
+ --data_path ${DATA_PATH} \
526
+ --model_name_or_path ${MODEL_PATH} \
527
+ --output_dir ${OUTPUT_DIR} \
528
+ --model_max_length ${MAX_LEN} \
529
+ --num_train_epochs ${EPOCHS} \
530
+ --per_device_train_batch_size ${BATCH_SIZE} \
531
+ --gradient_accumulation_steps 1 \
532
+ --save_strategy steps \
533
+ --save_steps 200 \
534
+ --learning_rate ${LR} \
535
+ --lr_scheduler_type cosine \
536
+ --adam_beta1 0.9 \
537
+ --adam_beta2 0.95 \
538
+ --adam_epsilon 1e-8 \
539
+ --max_grad_norm 1.0 \
540
+ --weight_decay 0.1 \
541
+ --warmup_ratio 0.01 \
542
+ --gradient_checkpointing True \
543
+ --bf16 True \
544
+ --tf32 True \
545
+ --deepspeed ${DS_CONFIG} \
546
+ --is_concat ${IS_CONCAT} \
547
+ --logging_steps 1 \
548
+ --log_on_each_node False
549
+ ```
550
+ ```shell
551
+ bash finetune/ds_finetune.sh
552
+ ```
553
+ - 可通过配置hostfile,实现单机、多机训练。
554
+ - 可通过配置ds_config,实现zero2、zero3。
555
+ - 可通过配置fp16、bf16实现混合精度训练,建议使用bf16,与预训练模型保持一致。
556
+ - 可通过配置is_concat参数,控制训练数据是否拼接,当训练数据量级较大时,可通过拼接提升训练效率。
557
+
558
+ <br>
559
+
560
+ # 许可证
561
+
562
+ 本仓库源码遵循开源许可证Apache 2.0。
563
+
564
+ 360智脑开源模型支持免费商用,无需向我们进行特殊申请。
config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "ZhinaoForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.1,
6
+ "attn_dropout_prob": 0.1,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_zhinao.ZhinaoConfig",
9
+ "AutoModelForCausalLM": "modeling_zhinao.ZhinaoForCausalLM"
10
+ },
11
+ "bf16": true,
12
+ "emb_dropout_prob": 0.1,
13
+ "flah-attn_version": "2.5.5",
14
+ "fp16": false,
15
+ "hidden_act": "silu",
16
+ "hidden_size": 4096,
17
+ "initializer_range": 0.01,
18
+ "intermediate_size": 13056,
19
+ "log_logit": false,
20
+ "max_position_embeddings": 365000,
21
+ "model_max_length": 365000,
22
+ "model_type": "zhinao",
23
+ "num_attention_heads": 32,
24
+ "num_hidden_layers": 32,
25
+ "num_key_value_heads": 8,
26
+ "rms_norm_eps": 1e-05,
27
+ "rope_scaling": null,
28
+ "rope_theta": 50000000.0,
29
+ "switch": 0,
30
+ "tie_word_embeddings": false,
31
+ "torch_dtype": "bfloat16",
32
+ "transformers_version": "4.39.3",
33
+ "use_cache": false,
34
+ "use_flash_attn": true,
35
+ "use_focal": false,
36
+ "use_loss_weight": false,
37
+ "use_pack_loss": false,
38
+ "vocab_size": 158464
39
+ }
configuration_zhinao.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 360zhinao and the HuggingFace Inc. team. All rights reserved.
2
+ # This code is built upon Huggingface's transformers repository.
3
+
4
+
5
+ from transformers.configuration_utils import PretrainedConfig
6
+ from transformers.utils import logging
7
+
8
+
9
+ logger = logging.get_logger(__name__)
10
+
11
+
12
+ class ZhinaoConfig(PretrainedConfig):
13
+
14
+ model_type = "zhinao"
15
+ keys_to_ignore_at_inference = ["past_key_values"]
16
+
17
+ def __init__(
18
+ self,
19
+ vocab_size=32000,
20
+ hidden_size=4096,
21
+ intermediate_size=11008,
22
+ num_hidden_layers=32,
23
+ num_attention_heads=32,
24
+ num_key_value_heads=None,
25
+ hidden_act="silu",
26
+ max_position_embeddings=2048,
27
+ initializer_range=0.02,
28
+ rms_norm_eps=1e-6,
29
+ use_cache=True,
30
+ pad_token_id=None,
31
+ bos_token_id=None,
32
+ eos_token_id=None,
33
+ tie_word_embeddings=False,
34
+ rope_theta=10000.0,
35
+ rope_scaling=None,
36
+ bf16 = False,
37
+ fp16 = False,
38
+ use_flash_attn="auto",
39
+ **kwargs,
40
+ ):
41
+ self.vocab_size = vocab_size
42
+ self.max_position_embeddings = max_position_embeddings
43
+ self.hidden_size = hidden_size
44
+ self.intermediate_size = intermediate_size
45
+ self.num_hidden_layers = num_hidden_layers
46
+ self.num_attention_heads = num_attention_heads
47
+
48
+ # for backward compatibility
49
+ if num_key_value_heads is None:
50
+ num_key_value_heads = num_attention_heads
51
+
52
+ self.num_key_value_heads = num_key_value_heads
53
+ self.hidden_act = hidden_act
54
+ self.initializer_range = initializer_range
55
+ self.rms_norm_eps = rms_norm_eps
56
+ self.use_cache = use_cache
57
+ self.rope_theta = rope_theta
58
+ self.rope_scaling = rope_scaling
59
+ self._rope_scaling_validation()
60
+
61
+ self.bf16 = bf16
62
+ self.fp16 = fp16
63
+ self.use_flash_attn = use_flash_attn
64
+
65
+ super().__init__(
66
+ pad_token_id=pad_token_id,
67
+ bos_token_id=bos_token_id,
68
+ eos_token_id=eos_token_id,
69
+ tie_word_embeddings=tie_word_embeddings,
70
+ **kwargs,
71
+ )
72
+
73
+ def _rope_scaling_validation(self):
74
+ """
75
+ Validate the `rope_scaling` configuration.
76
+ """
77
+ if self.rope_scaling is None:
78
+ return
79
+
80
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
81
+ raise ValueError(
82
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
83
+ f"got {self.rope_scaling}"
84
+ )
85
+ rope_scaling_type = self.rope_scaling.get("type", None)
86
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
87
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic", "ntk"]:
88
+ raise ValueError(
89
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
90
+ )
91
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
92
+ raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 158326,
6
+ 158332,
7
+ 158333
8
+ ],
9
+ "max_new_tokens": 1024,
10
+ "pad_token_id": 158326,
11
+ "top_k": 0,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.39.3"
14
+ }
generation_utils.py ADDED
@@ -0,0 +1,187 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import torch
3
+ import numpy as np
4
+ from queue import Queue
5
+ from typing import Tuple, List, Union, Iterable
6
+ from transformers.utils import logging, add_start_docstrings
7
+ from transformers.generation.logits_process import LogitsProcessor, LOGITS_PROCESSOR_INPUTS_DOCSTRING, LogitsProcessorList
8
+
9
+
10
+ def make_context(model, tokenizer,
11
+ messages: List[dict],
12
+ system: str = "You are a helpful assistant.",
13
+ max_new_tokens: int=0,
14
+ ):
15
+
16
+ max_new_tokens = max_new_tokens or model.generation_config.max_new_tokens
17
+ max_input_length = model.config.model_max_length - max_new_tokens
18
+
19
+ im_start_id = [tokenizer.im_start_id]
20
+ im_end_id = [tokenizer.im_end_id]
21
+ nl_tokens = tokenizer.encode("\n")
22
+
23
+ def _tokenize_str(role, content):
24
+ return tokenizer.encode(role, allowed_special=set()) + nl_tokens + tokenizer.encode(content, allowed_special=set())
25
+
26
+ def _parse_messages(messages):
27
+ system, query, history = "", "", []
28
+ ## system
29
+ if messages[0]["role"] == "system":
30
+ system = messages[0]["content"]
31
+ messages = messages[1:]
32
+ ## query
33
+ assert messages[-1]["role"] == "user"
34
+ query = messages[-1]["content"]
35
+ messages = messages[:-1]
36
+ ## history
37
+ assert len(messages) % 2 == 0
38
+ for i in range(0, len(messages), 2):
39
+ assert messages[i]["role"] == "user" and messages[i+1]["role"] == "assistant"
40
+ history.append([messages[i]["content"], messages[i+1]["content"]])
41
+
42
+ return system, query, history
43
+
44
+ _system, query, history = _parse_messages(messages)
45
+
46
+ ## system
47
+ system_text = _system if _system != "" else system
48
+ system_tokens = []
49
+ if system_text:
50
+ system_tokens = im_start_id + _tokenize_str("system", system_text) + im_end_id + nl_tokens
51
+
52
+ ## query
53
+ query_tokens = im_start_id + _tokenize_str("user", query) + im_end_id + nl_tokens
54
+ ## final assistant
55
+ final_tokens = im_start_id + tokenizer.encode("assistant", allowed_special=set()) + nl_tokens
56
+
57
+ ## max_history_tokens
58
+ max_history_length = max_input_length - len(system_tokens) - len(query_tokens) - len(final_tokens)
59
+
60
+ ## history
61
+ context_tokens = []
62
+ for turn_query, turn_response in reversed(history):
63
+ ## query tokens
64
+ history_query_tokens = im_start_id + _tokenize_str("user", turn_query) + im_end_id + nl_tokens
65
+ ## answer tokens
66
+ histroy_response_tokens = im_start_id + _tokenize_str("assistant", turn_response) + im_end_id + nl_tokens
67
+ ## this round tokens
68
+ next_context_tokens = history_query_tokens + histroy_response_tokens
69
+ ## concat
70
+ current_context_size = len(next_context_tokens) + len(context_tokens)
71
+ if current_context_size < max_history_length:
72
+ context_tokens = next_context_tokens + context_tokens
73
+ else:
74
+ break
75
+ input_tokens = system_tokens + context_tokens + query_tokens + final_tokens
76
+
77
+ return torch.LongTensor([input_tokens]).to(model.device)
78
+
79
+
80
+ class TextIterStreamer:
81
+ def __init__(self, tokenizer, skip_prompt=False, skip_special_tokens=False):
82
+ self.tokenizer = tokenizer
83
+ self.skip_prompt = skip_prompt
84
+ self.skip_special_tokens = skip_special_tokens
85
+ self.tokens = []
86
+ self.text_queue = Queue()
87
+ self.next_tokens_are_prompt = True
88
+
89
+ def put(self, value):
90
+ if self.skip_prompt and self.next_tokens_are_prompt:
91
+ self.next_tokens_are_prompt = False
92
+ else:
93
+ if len(value.shape) > 1:
94
+ value = value[0]
95
+ self.tokens.extend(value.tolist())
96
+ tokens_str = self.tokenizer.decode(self.tokens, skip_special_tokens=self.skip_special_tokens, errors='ignore')
97
+ self.text_queue.put(tokens_str)
98
+
99
+ def end(self):
100
+ self.text_queue.put(None)
101
+
102
+ def __iter__(self):
103
+ return self
104
+
105
+ def __next__(self):
106
+ value = self.text_queue.get()
107
+ if value is None:
108
+ raise StopIteration()
109
+ else:
110
+ return value
111
+
112
+
113
+ class OutputRepetitionPenaltyLogitsProcessor(LogitsProcessor):
114
+ r"""
115
+ [`OutputLogitsProcessor`] that prevents the repetition of previous tokens through a penalty. This penalty is applied at
116
+ most once per token. Note that, for decoder-only models like most LLMs, the considered tokens include the prompt.
117
+
118
+ In the original [paper](https://arxiv.org/pdf/1909.05858.pdf), the authors suggest the use of a penalty of around
119
+ 1.2 to achieve a good balance between truthful generation and lack of repetition. To penalize and reduce
120
+ repetition, use `penalty` values above 1.0, where a higher value penalizes more strongly. To reward and encourage
121
+ repetition, use `penalty` values between 0.0 and 1.0, where a lower value rewards more strongly.
122
+
123
+ Args:
124
+ penalty (`float`):
125
+ The parameter for repetition penalty. 1.0 means no penalty. Above 1.0 penalizes previously generated
126
+ tokens. Between 0.0 and 1.0 rewards previously generated tokens.
127
+ """
128
+
129
+ def __init__(self, input_length: int,
130
+ presence_penalties: float = 1.0,
131
+ frequency_penalties: float = 0,
132
+ repetition_penalties: float = 0):
133
+ if not (repetition_penalties > 0):
134
+ raise ValueError(f"`repetition_penalties` has to be a strictly positive float, but is {repetition_penalties}")
135
+ if not ( (frequency_penalties >= -2) and (frequency_penalties <= 2) ):
136
+ raise ValueError(f"`frequency_penalties` has to be [-2, 2], but is {frequency_penalties}")
137
+ if not ( (presence_penalties >= -2) and (presence_penalties <= 2) ):
138
+ raise ValueError(f"`presence_penalties` has to be [-2, 2], but is {presence_penalties}")
139
+
140
+ self.repetition_penalties = repetition_penalties
141
+ self.frequency_penalties = frequency_penalties
142
+ self.presence_penalties = presence_penalties
143
+ self.input_length = input_length
144
+
145
+ def _get_bin_counts_and_mask(
146
+ self,
147
+ tokens: torch.Tensor,
148
+ vocab_size: int,
149
+ num_seqs: int,
150
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
151
+ # Compute the bin counts for the tokens.
152
+ # vocab_size + 1 for padding.
153
+ bin_counts = torch.zeros((num_seqs, vocab_size + 1),
154
+ dtype=torch.long,
155
+ device=tokens.device)
156
+ bin_counts.scatter_add_(1, tokens, torch.ones_like(tokens))
157
+ bin_counts = bin_counts[:, :vocab_size]
158
+ mask = bin_counts > 0
159
+
160
+ return bin_counts, mask
161
+
162
+ @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
163
+ def __call__(self, input_ids: torch.LongTensor, logits: torch.FloatTensor) -> torch.FloatTensor:
164
+ prompt_tokens_tensor = input_ids[:, :self.input_length+1]
165
+ output_tokens_tensor = input_ids[:, self.input_length+1:]
166
+
167
+ num_seqs, vocab_size = logits.shape
168
+ _, prompt_mask = self._get_bin_counts_and_mask(
169
+ prompt_tokens_tensor, vocab_size, num_seqs)
170
+ output_bin_counts, output_mask = self._get_bin_counts_and_mask(
171
+ output_tokens_tensor, vocab_size, num_seqs)
172
+
173
+ repetition_penalties = torch.Tensor([self.repetition_penalties]).to(logits.device)
174
+ frequency_penalties = torch.Tensor([self.frequency_penalties]).to(logits.device)
175
+ presence_penalties = torch.Tensor([self.presence_penalties]).to(logits.device)
176
+
177
+ repetition_penalties = repetition_penalties[:, None].repeat(1, vocab_size)
178
+ repetition_penalties[~(prompt_mask | output_mask)] = 1.0
179
+ logits = torch.where(logits > 0, logits / repetition_penalties,
180
+ logits * repetition_penalties)
181
+
182
+ # We follow the definition in OpenAI API.
183
+ # Refer to https://platform.openai.com/docs/api-reference/parameter-details
184
+ logits -= frequency_penalties.unsqueeze_(dim=1) * output_bin_counts
185
+ logits -= presence_penalties.unsqueeze_(dim=1) * output_mask
186
+
187
+ return logits
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee99ff8d71a8361193bf9fb9d2edcf7626d09f6000d0fafa8204affcd31f3c38
3
+ size 4991500768
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01a7c9b8525f8ab67af4fa1f77c63840c5f4d2aa7bf93bc0ffd2190ad6b1a0e7
3
+ size 4997868656
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a82196ae3f30d87b5a1db143cf3a731d192cef2b394c2c16a29f7eea7203ab87
3
+ size 4261734000
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f970eab4e5b2b0e444bffd4a24c519be7a67c3ef2432f0290548a8648e1c8ea4
3
+ size 1298137216
model.safetensors.index.json ADDED
@@ -0,0 +1,266 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15549210624
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.qkv_proj.bias": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.self_attn.qkv_proj.bias": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
25
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
26
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
27
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
28
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
29
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
30
+ "model.layers.10.self_attn.qkv_proj.bias": "model-00002-of-00004.safetensors",
31
+ "model.layers.10.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
32
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.11.self_attn.qkv_proj.bias": "model-00002-of-00004.safetensors",
39
+ "model.layers.11.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.12.self_attn.qkv_proj.bias": "model-00002-of-00004.safetensors",
47
+ "model.layers.12.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.13.self_attn.qkv_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.13.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.14.self_attn.qkv_proj.bias": "model-00002-of-00004.safetensors",
63
+ "model.layers.14.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.15.self_attn.qkv_proj.bias": "model-00002-of-00004.safetensors",
71
+ "model.layers.15.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.16.self_attn.qkv_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.16.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.17.self_attn.qkv_proj.bias": "model-00002-of-00004.safetensors",
87
+ "model.layers.17.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.18.self_attn.qkv_proj.bias": "model-00002-of-00004.safetensors",
95
+ "model.layers.18.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.19.self_attn.qkv_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.19.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
105
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
106
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
107
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
108
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
109
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
110
+ "model.layers.2.self_attn.qkv_proj.bias": "model-00001-of-00004.safetensors",
111
+ "model.layers.2.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
112
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors",
113
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.20.self_attn.qkv_proj.bias": "model-00002-of-00004.safetensors",
119
+ "model.layers.20.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
121
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
122
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
124
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
125
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.21.self_attn.qkv_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.21.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
131
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
132
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
134
+ "model.layers.22.self_attn.qkv_proj.bias": "model-00003-of-00004.safetensors",
135
+ "model.layers.22.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
137
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
139
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.23.self_attn.qkv_proj.bias": "model-00003-of-00004.safetensors",
143
+ "model.layers.23.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
146
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
149
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.24.self_attn.qkv_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.24.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
153
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
154
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
155
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
156
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
157
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
158
+ "model.layers.25.self_attn.qkv_proj.bias": "model-00003-of-00004.safetensors",
159
+ "model.layers.25.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
160
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
161
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
162
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
163
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
164
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.26.self_attn.qkv_proj.bias": "model-00003-of-00004.safetensors",
167
+ "model.layers.26.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
170
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
173
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.27.self_attn.qkv_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.27.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
182
+ "model.layers.28.self_attn.qkv_proj.bias": "model-00003-of-00004.safetensors",
183
+ "model.layers.28.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
185
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
187
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.29.self_attn.qkv_proj.bias": "model-00003-of-00004.safetensors",
191
+ "model.layers.29.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
193
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
194
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
195
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
196
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
197
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
198
+ "model.layers.3.self_attn.qkv_proj.bias": "model-00001-of-00004.safetensors",
199
+ "model.layers.3.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
200
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
206
+ "model.layers.30.self_attn.qkv_proj.bias": "model-00003-of-00004.safetensors",
207
+ "model.layers.30.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
209
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
211
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.31.self_attn.qkv_proj.bias": "model-00003-of-00004.safetensors",
215
+ "model.layers.31.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
217
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
218
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
219
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
220
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
221
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
222
+ "model.layers.4.self_attn.qkv_proj.bias": "model-00001-of-00004.safetensors",
223
+ "model.layers.4.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
224
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
225
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
226
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
227
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
228
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
229
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
230
+ "model.layers.5.self_attn.qkv_proj.bias": "model-00001-of-00004.safetensors",
231
+ "model.layers.5.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
232
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
233
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
234
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
235
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
236
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
237
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
238
+ "model.layers.6.self_attn.qkv_proj.bias": "model-00001-of-00004.safetensors",
239
+ "model.layers.6.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
240
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
241
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
242
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
243
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
244
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
245
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
246
+ "model.layers.7.self_attn.qkv_proj.bias": "model-00001-of-00004.safetensors",
247
+ "model.layers.7.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
248
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
249
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
250
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
251
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
252
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
253
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
254
+ "model.layers.8.self_attn.qkv_proj.bias": "model-00001-of-00004.safetensors",
255
+ "model.layers.8.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
256
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
257
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
258
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
259
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
260
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
261
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
262
+ "model.layers.9.self_attn.qkv_proj.bias": "model-00001-of-00004.safetensors",
263
+ "model.layers.9.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.norm.weight": "model-00003-of-00004.safetensors"
265
+ }
266
+ }
modeling_zhinao.py ADDED
@@ -0,0 +1,1094 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 360zhinao and the HuggingFace Inc. team. All rights reserved.
2
+ # This code is built upon Huggingface's transformers repository.
3
+
4
+ import math
5
+ import warnings
6
+ from threading import Thread
7
+ from typing import List, Optional, Tuple, Union
8
+
9
+ import torch
10
+ import torch.nn.functional as F
11
+ import torch.utils.checkpoint
12
+ from torch import nn
13
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
14
+
15
+ from transformers.activations import ACT2FN
16
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
17
+ from transformers.modeling_utils import PreTrainedModel
18
+ from transformers.utils import logging
19
+ from transformers.generation.utils import GenerationConfig
20
+ from transformers.generation.logits_process import LogitsProcessorList
21
+ from .configuration_zhinao import ZhinaoConfig
22
+ from .generation_utils import TextIterStreamer, make_context, OutputRepetitionPenaltyLogitsProcessor
23
+
24
+
25
+ try:
26
+ from flash_attn import flash_attn_varlen_func
27
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
28
+ except:
29
+ flash_attn_varlen_func = None
30
+ index_first_axis, pad_input, unpad_input = None, None, None
31
+
32
+
33
+ logger = logging.get_logger(__name__)
34
+
35
+ _CONFIG_FOR_DOC = "ZhinaoConfig"
36
+
37
+
38
+ def _get_unpad_data(attention_mask):
39
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
40
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
41
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
42
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
43
+ return (
44
+ indices,
45
+ cu_seqlens,
46
+ max_seqlen_in_batch,
47
+ )
48
+
49
+
50
+ def calc_logits_metric(logits, log_topk=True):
51
+ """"output logit metric"""
52
+ result = {
53
+ f"_max": round(torch.max(logits).item(), 7),
54
+ f"_var": round(torch.var(logits).item(), 7),
55
+ }
56
+ result["_mean"] = round(torch.mean(logits).item(), 3)
57
+ result["_min"] = round(torch.min(logits).item(), 3)
58
+ result["_max-mean"] = round(result["_max"] - result["_mean"], 3)
59
+
60
+ if log_topk:
61
+ topk = 10
62
+ topk_avg_logits = logits.topk(topk, dim=-1).values.view(-1, topk)
63
+ topk_avg_logits = torch.mean(topk_avg_logits, dim=0).tolist()
64
+ result["_topk"] = topk_avg_logits[:topk]
65
+
66
+ # probs
67
+ log_probs = F.softmax(logits, dim=-1)
68
+
69
+ topk = 3
70
+ topk_avg_probs = log_probs.topk(topk, dim=-1).values.view(-1, topk)
71
+ topk_avg_probs = torch.mean(topk_avg_probs, dim=0).tolist()
72
+ log_probs = None
73
+
74
+ for i in range(topk):
75
+ result[f"_prob_topk{i+1}"] = round(topk_avg_probs[i], 3)
76
+ return result
77
+
78
+
79
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
80
+ def _make_causal_mask(
81
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
82
+ ):
83
+ """
84
+ Make causal mask used for bi-directional self-attention.
85
+ """
86
+ bsz, tgt_len = input_ids_shape
87
+ mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
88
+ mask_cond = torch.arange(mask.size(-1), device=device)
89
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
90
+ mask = mask.to(dtype)
91
+
92
+ if past_key_values_length > 0:
93
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
94
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
95
+
96
+
97
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
98
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
99
+ """
100
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
101
+ """
102
+ bsz, src_len = mask.size()
103
+ tgt_len = tgt_len if tgt_len is not None else src_len
104
+
105
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
106
+
107
+ inverted_mask = 1.0 - expanded_mask
108
+
109
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
110
+
111
+
112
+ class ZhinaoRMSNorm(nn.Module):
113
+ def __init__(self, hidden_size, eps=1e-6):
114
+ """
115
+ ZhinaoRMSNorm is equivalent to T5LayerNorm
116
+ """
117
+ super().__init__()
118
+ self.weight = nn.Parameter(torch.ones(hidden_size))
119
+ self.variance_epsilon = eps
120
+
121
+ def forward(self, hidden_states):
122
+ input_dtype = hidden_states.dtype
123
+ hidden_states = hidden_states.to(torch.float32)
124
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
125
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
126
+ return self.weight * hidden_states.to(input_dtype)
127
+
128
+
129
+ class ZhinaoRotaryEmbedding(torch.nn.Module):
130
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
131
+ super().__init__()
132
+
133
+ self.dim = dim
134
+ self.max_position_embeddings = max_position_embeddings
135
+ self.base = base
136
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
137
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
138
+
139
+ # Build here to make `torch.jit.trace` work.
140
+ self._set_cos_sin_cache(
141
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
142
+ )
143
+
144
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
145
+ self.max_seq_len_cached = seq_len
146
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
147
+
148
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
149
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
150
+ emb = torch.cat((freqs, freqs), dim=-1)
151
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
152
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
153
+
154
+ def forward(self, x, seq_len=None):
155
+ # x: [bs, num_attention_heads, seq_len, head_size]
156
+ if seq_len > self.max_seq_len_cached:
157
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
158
+
159
+ return (
160
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
161
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
162
+ )
163
+
164
+
165
+ class ZhinaoLinearScalingRotaryEmbedding(ZhinaoRotaryEmbedding):
166
+ """ZhinaoRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
167
+
168
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
169
+ self.scaling_factor = scaling_factor
170
+ super().__init__(dim, max_position_embeddings, base, device)
171
+
172
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
173
+ self.max_seq_len_cached = seq_len
174
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
175
+ t = t / self.scaling_factor
176
+
177
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
178
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
179
+ emb = torch.cat((freqs, freqs), dim=-1)
180
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
181
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
182
+
183
+
184
+ class ZhinaoDynamicNTKScalingRotaryEmbedding(ZhinaoRotaryEmbedding):
185
+ """ZhinaoRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
186
+
187
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
188
+ self.scaling_factor = scaling_factor
189
+ super().__init__(dim, max_position_embeddings, base, device)
190
+
191
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
192
+ self.max_seq_len_cached = seq_len
193
+
194
+ if seq_len > self.max_position_embeddings:
195
+ base = self.base * (
196
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
197
+ ) ** (self.dim / (self.dim - 2))
198
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
199
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
200
+
201
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
202
+
203
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
204
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
205
+ emb = torch.cat((freqs, freqs), dim=-1)
206
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
207
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
208
+
209
+
210
+ class ZhinaoNTKScalingRotaryEmbedding(torch.nn.Module):
211
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, scaling_factor=100, device=None):
212
+ super().__init__()
213
+
214
+ self.dim = dim
215
+ self.max_position_embeddings = max_position_embeddings
216
+ self.base = base * scaling_factor
217
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
218
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
219
+
220
+ # Build here to make `torch.jit.trace` work.
221
+ self._set_cos_sin_cache(
222
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
223
+ )
224
+
225
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
226
+ self.max_seq_len_cached = seq_len
227
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
228
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
229
+ emb = torch.cat((freqs, freqs), dim=-1)
230
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
231
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
232
+
233
+ def forward(self, x, seq_len=None):
234
+ if seq_len > self.max_seq_len_cached:
235
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
236
+
237
+ return (
238
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
239
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
240
+ )
241
+
242
+
243
+ def rotate_half(x):
244
+ """Rotates half the hidden dims of the input."""
245
+ x1 = x[..., : x.shape[-1] // 2]
246
+ x2 = x[..., x.shape[-1] // 2 :]
247
+ return torch.cat((-x2, x1), dim=-1)
248
+
249
+
250
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
251
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
252
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
253
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
254
+ cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
255
+ sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
256
+ q_embed = (q * cos) + (rotate_half(q) * sin)
257
+ k_embed = (k * cos) + (rotate_half(k) * sin)
258
+ return q_embed, k_embed
259
+
260
+
261
+ class ZhinaoMLP(nn.Module):
262
+ def __init__(self, config):
263
+ super().__init__()
264
+ self.config = config
265
+ self.hidden_size = config.hidden_size
266
+ self.intermediate_size = config.intermediate_size
267
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
268
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
269
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
270
+ self.act_fn = ACT2FN[config.hidden_act]
271
+
272
+ def forward(self, x):
273
+ intermediate = self.act_fn(self.gate_proj(x)) * self.up_proj(x)
274
+ down_proj = self.down_proj(intermediate)
275
+ return down_proj
276
+
277
+
278
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
279
+ """
280
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
281
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
282
+ """
283
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
284
+ if n_rep == 1:
285
+ return hidden_states
286
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
287
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
288
+
289
+
290
+ class ZhinaoAttention(nn.Module):
291
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
292
+
293
+ def __init__(self, config: ZhinaoConfig):
294
+ super().__init__()
295
+ self.config = config
296
+ self.hidden_size = config.hidden_size
297
+ self.num_heads = config.num_attention_heads
298
+ self.head_dim = self.hidden_size // self.num_heads
299
+ self.num_key_value_heads = config.num_key_value_heads
300
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
301
+ self.max_position_embeddings = config.max_position_embeddings
302
+ self.rope_theta = config.rope_theta
303
+ self.is_causal = True
304
+ self.dropout = 0.0
305
+ self.use_flash_attn = config.use_flash_attn
306
+
307
+ if (self.head_dim * self.num_heads) != self.hidden_size:
308
+ raise ValueError(
309
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
310
+ f" and `num_heads`: {self.num_heads})."
311
+ )
312
+
313
+ self.qkv_hidden_size = (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim
314
+ self.qkv_proj = nn.Linear(self.hidden_size, self.qkv_hidden_size, bias=True)
315
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
316
+ self._init_rope()
317
+
318
+ def _init_rope(self):
319
+ if self.config.rope_scaling is None:
320
+ self.rotary_emb = ZhinaoRotaryEmbedding(
321
+ self.head_dim,
322
+ max_position_embeddings=self.max_position_embeddings,
323
+ base=self.rope_theta,
324
+ )
325
+ else:
326
+ scaling_type = self.config.rope_scaling["type"]
327
+ scaling_factor = self.config.rope_scaling["factor"]
328
+ if scaling_type == "linear":
329
+ self.rotary_emb = ZhinaoLinearScalingRotaryEmbedding(
330
+ self.head_dim,
331
+ max_position_embeddings=self.max_position_embeddings,
332
+ scaling_factor=scaling_factor,
333
+ base=self.rope_theta,
334
+ )
335
+ elif scaling_type == "dynamic":
336
+ self.rotary_emb = ZhinaoDynamicNTKScalingRotaryEmbedding(
337
+ self.head_dim,
338
+ max_position_embeddings=self.max_position_embeddings,
339
+ scaling_factor=scaling_factor,
340
+ base=self.rope_theta,
341
+ )
342
+ elif scaling_type == "ntk":
343
+ self.rotary_emb = ZhinaoNTKScalingRotaryEmbedding(
344
+ self.head_dim,
345
+ max_position_embeddings=self.max_position_embeddings,
346
+ scaling_factor=scaling_factor,
347
+ base=self.rope_theta,
348
+ )
349
+ else:
350
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
351
+
352
+ def raw_attention(self, query_states, key_states, value_states, attention_mask):
353
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
354
+
355
+ if attention_mask is not None:
356
+ attn_weights = attn_weights + attention_mask
357
+
358
+ # upcast attention to fp32
359
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
360
+ attn_output = torch.matmul(attn_weights, value_states)
361
+
362
+ attn_output = attn_output.transpose(1, 2).contiguous()
363
+
364
+ return attn_output
365
+
366
+ def flash_attention(self, query_states, key_states, value_states, attention_mask):
367
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
368
+ # to be able to avoid many of these transpose/reshape/view.
369
+ query_states = query_states.transpose(1, 2)
370
+ key_states = key_states.transpose(1, 2)
371
+ value_states = value_states.transpose(1, 2)
372
+
373
+ batch_size, query_length = query_states.shape[0], query_states.shape[1]
374
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
375
+ query_states, key_states, value_states, attention_mask, query_length
376
+ )
377
+
378
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
379
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
380
+
381
+ attn_output_unpad = flash_attn_varlen_func(
382
+ query_states,
383
+ key_states,
384
+ value_states,
385
+ cu_seqlens_q=cu_seqlens_q,
386
+ cu_seqlens_k=cu_seqlens_k,
387
+ max_seqlen_q=max_seqlen_in_batch_q,
388
+ max_seqlen_k=max_seqlen_in_batch_k,
389
+ dropout_p=self.dropout,
390
+ softmax_scale=None,
391
+ causal=self.is_causal,
392
+ )
393
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
394
+ return attn_output
395
+
396
+ def forward(
397
+ self,
398
+ hidden_states: torch.Tensor,
399
+ attention_mask: Optional[torch.Tensor] = None,
400
+ position_ids: Optional[torch.LongTensor] = None,
401
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
402
+ output_attentions: bool = False,
403
+ use_cache: bool = False,
404
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
405
+ bsz, q_len, _ = hidden_states.size()
406
+
407
+ mixed_x_layer = self.qkv_proj(hidden_states)
408
+ new_tensor_shape = mixed_x_layer.size()[:-1] + \
409
+ (self.num_key_value_heads, ((self.num_heads // self.num_key_value_heads + 2) * self.head_dim))
410
+ mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
411
+ query, key_states, value_states = torch.split(
412
+ mixed_x_layer,
413
+ [self.num_heads // self.num_key_value_heads * self.head_dim, self.head_dim, self.head_dim],
414
+ dim=3
415
+ )
416
+ # [sq, b, ng, np/ng * hn] -> [sq, b, np, hn]
417
+ query_states = query.contiguous().view(query.size(0), query.size(1), -1, self.head_dim)
418
+
419
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
420
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
421
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
422
+
423
+ kv_seq_len = key_states.shape[-2]
424
+ if past_key_value is not None:
425
+ kv_seq_len += past_key_value[0].shape[-2]
426
+ rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
427
+ cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
428
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
429
+
430
+ if past_key_value is not None:
431
+ # reuse k, v, self_attention
432
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
433
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
434
+
435
+ past_key_value = (key_states, value_states) if use_cache else None
436
+
437
+ # repeat k/v heads if n_kv_heads < n_heads
438
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
439
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
440
+
441
+ # q, k, v: [b, n, s, h]
442
+ # check attention mask
443
+ if self.use_flash_attn:
444
+ if attention_mask is not None and attention_mask.size() != (bsz, kv_seq_len):
445
+ raise ValueError(f"Attention mask should be of size {(bsz, kv_seq_len)}, but is {attention_mask.size()}")
446
+ attn_output = self.flash_attention(query_states, key_states, value_states, attention_mask)
447
+ else:
448
+ if attention_mask is not None and attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
449
+ raise ValueError(f"Attention mask should be of size {bsz, 1, q_len, kv_seq_len}, but is {attention_mask.size()}")
450
+ attn_output = self.raw_attention(query_states, key_states, value_states, attention_mask)
451
+
452
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
453
+ attn_output = self.o_proj(attn_output)
454
+
455
+ if not output_attentions:
456
+ attn_weights = None
457
+
458
+ return attn_output, attn_weights, past_key_value
459
+
460
+ # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input
461
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
462
+ batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
463
+
464
+ # On the first iteration we need to properly re-create the padding mask
465
+ # by slicing it on the proper place
466
+ if kv_seq_len != attention_mask.shape[-1]:
467
+ attention_mask_num_tokens = attention_mask.shape[-1]
468
+ attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
469
+
470
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
471
+
472
+ key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
473
+ value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
474
+
475
+ if query_length == kv_seq_len:
476
+ query_layer = index_first_axis(
477
+ query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
478
+ )
479
+ cu_seqlens_q = cu_seqlens_k
480
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
481
+ indices_q = indices_k
482
+ elif query_length == 1:
483
+ max_seqlen_in_batch_q = 1
484
+ cu_seqlens_q = torch.arange(
485
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
486
+ ) # There is a memcpy here, that is very bad.
487
+ indices_q = cu_seqlens_q[:-1]
488
+ query_layer = query_layer.squeeze(1)
489
+ else:
490
+ # The -q_len: slice assumes left padding.
491
+ attention_mask = attention_mask[:, -query_length:]
492
+
493
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
494
+ return (
495
+ query_layer,
496
+ key_layer,
497
+ value_layer,
498
+ indices_q,
499
+ (cu_seqlens_q, cu_seqlens_k),
500
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
501
+ )
502
+
503
+
504
+ class ZhinaoDecoderLayer(nn.Module):
505
+ def __init__(self, config: ZhinaoConfig):
506
+ super().__init__()
507
+ self.hidden_size = config.hidden_size
508
+
509
+ self.self_attn = ZhinaoAttention(config=config)
510
+ self.mlp = ZhinaoMLP(config)
511
+ self.input_layernorm = ZhinaoRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
512
+ self.post_attention_layernorm = ZhinaoRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
513
+
514
+ def forward(
515
+ self,
516
+ hidden_states: torch.Tensor,
517
+ attention_mask: Optional[torch.Tensor] = None,
518
+ position_ids: Optional[torch.LongTensor] = None,
519
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
520
+ output_attentions: Optional[bool] = False,
521
+ use_cache: Optional[bool] = False,
522
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
523
+ """
524
+ Args:
525
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
526
+ attention_mask (`torch.FloatTensor`, *optional*):
527
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
528
+ query_sequence_length, key_sequence_length)` if default attention is used.
529
+ output_attentions (`bool`, *optional*):
530
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
531
+ returned tensors for more detail.
532
+ use_cache (`bool`, *optional*):
533
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
534
+ (see `past_key_values`).
535
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
536
+ """
537
+
538
+ residual = hidden_states
539
+
540
+ hidden_states = self.input_layernorm(hidden_states)
541
+
542
+ # Self Attention
543
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
544
+ hidden_states=hidden_states,
545
+ attention_mask=attention_mask,
546
+ position_ids=position_ids,
547
+ past_key_value=past_key_value,
548
+ output_attentions=output_attentions,
549
+ use_cache=use_cache,
550
+ )
551
+ hidden_states = residual + hidden_states
552
+
553
+ # Fully Connected
554
+ residual = hidden_states
555
+ hidden_states = self.post_attention_layernorm(hidden_states)
556
+ hidden_states = self.mlp(hidden_states)
557
+ hidden_states = residual + hidden_states
558
+
559
+ outputs = (hidden_states,)
560
+
561
+ if output_attentions:
562
+ outputs += (self_attn_weights,)
563
+
564
+ if use_cache:
565
+ outputs += (present_key_value,)
566
+
567
+ return outputs
568
+
569
+
570
+ class ZhinaoPreTrainedModel(PreTrainedModel):
571
+ config_class = ZhinaoConfig
572
+ base_model_prefix = "model"
573
+ supports_gradient_checkpointing = True
574
+ _no_split_modules = ["ZhinaoDecoderLayer"]
575
+ _skip_keys_device_placement = "past_key_values"
576
+
577
+ def _init_weights(self, module):
578
+ std = self.config.initializer_range
579
+ if isinstance(module, nn.Linear):
580
+ module.weight.data.normal_(mean=0.0, std=std)
581
+ if module.bias is not None:
582
+ module.bias.data.zero_()
583
+ elif isinstance(module, nn.Embedding):
584
+ module.weight.data.normal_(mean=0.0, std=std)
585
+ if module.padding_idx is not None:
586
+ module.weight.data[module.padding_idx].zero_()
587
+
588
+ def _set_gradient_checkpointing(self, module, value=False):
589
+ if isinstance(module, ZhinaoModel):
590
+ module.gradient_checkpointing = value
591
+
592
+
593
+ class ZhinaoModel(ZhinaoPreTrainedModel):
594
+ """
595
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`ZhinaoDecoderLayer`]
596
+
597
+ Args:
598
+ config: ZhinaoConfig
599
+ """
600
+
601
+ def __init__(self, config: ZhinaoConfig):
602
+ super().__init__(config)
603
+ self.padding_idx = config.pad_token_id
604
+ self.vocab_size = config.vocab_size
605
+ self.use_flash_attn = config.use_flash_attn
606
+
607
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
608
+ self.layers = nn.ModuleList([ZhinaoDecoderLayer(config) for _ in range(config.num_hidden_layers)])
609
+ self.norm = ZhinaoRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
610
+
611
+ self.gradient_checkpointing = False
612
+ # Initialize weights and apply final processing
613
+ self.post_init()
614
+
615
+ def get_input_embeddings(self):
616
+ return self.embed_tokens
617
+
618
+ def set_input_embeddings(self, value):
619
+ self.embed_tokens = value
620
+
621
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
622
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
623
+ # create causal mask
624
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
625
+ combined_attention_mask = None
626
+ if input_shape[-1] > 1:
627
+ combined_attention_mask = _make_causal_mask(
628
+ input_shape,
629
+ inputs_embeds.dtype,
630
+ device=inputs_embeds.device,
631
+ past_key_values_length=past_key_values_length,
632
+ )
633
+
634
+ if attention_mask is not None:
635
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
636
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
637
+ inputs_embeds.device
638
+ )
639
+ combined_attention_mask = (
640
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
641
+ )
642
+
643
+ return combined_attention_mask
644
+
645
+ def forward(
646
+ self,
647
+ input_ids: torch.LongTensor = None,
648
+ attention_mask: Optional[torch.Tensor] = None,
649
+ position_ids: Optional[torch.LongTensor] = None,
650
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
651
+ inputs_embeds: Optional[torch.FloatTensor] = None,
652
+ use_cache: Optional[bool] = None,
653
+ output_attentions: Optional[bool] = None,
654
+ output_hidden_states: Optional[bool] = None,
655
+ return_dict: Optional[bool] = None,
656
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
657
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
658
+ output_hidden_states = (
659
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
660
+ )
661
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
662
+
663
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
664
+
665
+ # retrieve input_ids and inputs_embeds
666
+ if input_ids is not None and inputs_embeds is not None:
667
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
668
+ elif input_ids is not None:
669
+ batch_size, seq_length = input_ids.shape
670
+ elif inputs_embeds is not None:
671
+ batch_size, seq_length, _ = inputs_embeds.shape
672
+ else:
673
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
674
+
675
+ seq_length_with_past = seq_length
676
+ past_key_values_length = 0
677
+
678
+ if past_key_values is not None:
679
+ past_key_values_length = past_key_values[0][0].shape[2]
680
+ seq_length_with_past = seq_length_with_past + past_key_values_length
681
+
682
+ if position_ids is None:
683
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
684
+ position_ids = torch.arange(
685
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
686
+ )
687
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
688
+ else:
689
+ position_ids = position_ids.view(-1, seq_length).long()
690
+
691
+ if inputs_embeds is None:
692
+ inputs_embeds = self.embed_tokens(input_ids)
693
+ # embed positions
694
+ if attention_mask is None:
695
+ attention_mask = torch.ones(
696
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
697
+ )
698
+
699
+ # (batch_size, 1, seq_length, seq_length)` if default attention is used
700
+ if not self.use_flash_attn:
701
+ attention_mask = self._prepare_decoder_attention_mask(
702
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
703
+ )
704
+
705
+ hidden_states = inputs_embeds
706
+
707
+ if self.gradient_checkpointing and self.training:
708
+ if use_cache:
709
+ logger.warning_once(
710
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
711
+ )
712
+ use_cache = False
713
+
714
+ # decoder layers
715
+ all_hidden_states = () if output_hidden_states else None
716
+ all_self_attns = () if output_attentions else None
717
+ next_decoder_cache = () if use_cache else None
718
+
719
+ for idx, decoder_layer in enumerate(self.layers):
720
+ if output_hidden_states:
721
+ all_hidden_states += (hidden_states,)
722
+
723
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
724
+
725
+ if self.gradient_checkpointing and self.training:
726
+
727
+ def create_custom_forward(module):
728
+ def custom_forward(*inputs):
729
+ # None for past_key_value
730
+ return module(*inputs, past_key_value, output_attentions)
731
+
732
+ return custom_forward
733
+
734
+ layer_outputs = torch.utils.checkpoint.checkpoint(
735
+ create_custom_forward(decoder_layer),
736
+ hidden_states,
737
+ attention_mask,
738
+ position_ids,
739
+ )
740
+ else:
741
+ layer_outputs = decoder_layer(
742
+ hidden_states,
743
+ attention_mask=attention_mask,
744
+ position_ids=position_ids,
745
+ past_key_value=past_key_value,
746
+ output_attentions=output_attentions,
747
+ use_cache=use_cache,
748
+ )
749
+
750
+ hidden_states = layer_outputs[0]
751
+
752
+ if use_cache:
753
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
754
+
755
+ if output_attentions:
756
+ all_self_attns += (layer_outputs[1],)
757
+
758
+ hidden_states = self.norm(hidden_states)
759
+
760
+ # add hidden states from the last decoder layer
761
+ if output_hidden_states:
762
+ all_hidden_states += (hidden_states,)
763
+
764
+ next_cache = next_decoder_cache if use_cache else None
765
+ if not return_dict:
766
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
767
+
768
+ return BaseModelOutputWithPast(
769
+ last_hidden_state=hidden_states,
770
+ past_key_values=next_cache,
771
+ hidden_states=all_hidden_states,
772
+ attentions=all_self_attns,
773
+ )
774
+
775
+
776
+ class ZhinaoForCausalLM(ZhinaoPreTrainedModel):
777
+ _tied_weights_keys = ["lm_head.weight"]
778
+
779
+ def __init__(self, config):
780
+ super().__init__(config)
781
+ self.model = ZhinaoModel(config)
782
+ self.vocab_size = config.vocab_size
783
+ self.log_logit = config.log_logit
784
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
785
+
786
+ # Initialize weights and apply final processing
787
+ if config.bf16:
788
+ self.model.bfloat16()
789
+ self.lm_head.bfloat16()
790
+ if config.fp16:
791
+ self.model.half()
792
+ self.lm_head.half()
793
+
794
+ if config.use_flash_attn == "auto":
795
+ if flash_attn_varlen_func:
796
+ if config.bf16 or config.fp16:
797
+ logger.warn("Try importing flash-attention.")
798
+ config.use_flash_attn = True
799
+ else:
800
+ config.use_flash_attn = False
801
+ logger.warn("Flash attention will be disabled because it does NOT support fp32.")
802
+ else:
803
+ config.use_flash_attn = False
804
+ logger.warn("Please install FlashAttention first, " "e.g., with pip install flash-attn")
805
+
806
+ self.post_init()
807
+
808
+ def get_input_embeddings(self):
809
+ return self.model.embed_tokens
810
+
811
+ def set_input_embeddings(self, value):
812
+ self.model.embed_tokens = value
813
+
814
+ def get_output_embeddings(self):
815
+ return self.lm_head
816
+
817
+ def set_output_embeddings(self, new_embeddings):
818
+ self.lm_head = new_embeddings
819
+
820
+ def set_decoder(self, decoder):
821
+ self.model = decoder
822
+
823
+ def get_decoder(self):
824
+ return self.model
825
+
826
+ def forward(
827
+ self,
828
+ input_ids: torch.LongTensor = None,
829
+ attention_mask: Optional[torch.Tensor] = None,
830
+ position_ids: Optional[torch.LongTensor] = None,
831
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
832
+ inputs_embeds: Optional[torch.FloatTensor] = None,
833
+ labels: Optional[torch.LongTensor] = None,
834
+ use_cache: Optional[bool] = None,
835
+ output_attentions: Optional[bool] = None,
836
+ output_hidden_states: Optional[bool] = None,
837
+ return_dict: Optional[bool] = None,
838
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
839
+
840
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
841
+ output_hidden_states = (
842
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
843
+ )
844
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
845
+
846
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
847
+ outputs = self.model(
848
+ input_ids=input_ids,
849
+ attention_mask=attention_mask,
850
+ position_ids=position_ids,
851
+ past_key_values=past_key_values,
852
+ inputs_embeds=inputs_embeds,
853
+ use_cache=use_cache,
854
+ output_attentions=output_attentions,
855
+ output_hidden_states=output_hidden_states,
856
+ return_dict=return_dict,
857
+ )
858
+
859
+ hidden_states = outputs[0]
860
+ logits = self.lm_head(hidden_states)
861
+
862
+ # warn:Huge gpu memory
863
+ logits = logits.float()
864
+
865
+ # log_logit
866
+ if self.log_logit:
867
+ log_res = calc_logits_metric(logits)
868
+ if not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0:
869
+ print("logits_log", log_res)
870
+
871
+ loss = None
872
+ if labels is not None:
873
+ # Shift so that tokens < n predict n
874
+ shift_logits = logits[..., :-1, :].contiguous()
875
+ shift_labels = labels[..., 1:].contiguous()
876
+ # Flatten the tokens
877
+ loss_fct = CrossEntropyLoss()
878
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
879
+ shift_labels = shift_labels.view(-1)
880
+ # Enable model parallelism
881
+ shift_labels = shift_labels.to(shift_logits.device)
882
+ loss = loss_fct(shift_logits, shift_labels)
883
+
884
+ if not return_dict:
885
+ output = (logits,) + outputs[1:]
886
+ return (loss,) + output if loss is not None else output
887
+
888
+ return CausalLMOutputWithPast(
889
+ loss=loss,
890
+ logits=logits,
891
+ past_key_values=outputs.past_key_values,
892
+ hidden_states=outputs.hidden_states,
893
+ attentions=outputs.attentions,
894
+ )
895
+
896
+ def prepare_inputs_for_generation(
897
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
898
+ ):
899
+ if past_key_values:
900
+ input_ids = input_ids[:, -1:]
901
+
902
+ position_ids = kwargs.get("position_ids", None)
903
+ if attention_mask is not None and position_ids is None:
904
+ # create position_ids on the fly for batch generation
905
+ position_ids = attention_mask.long().cumsum(-1) - 1
906
+ position_ids.masked_fill_(attention_mask == 0, 1)
907
+ if past_key_values:
908
+ position_ids = position_ids[:, -1].unsqueeze(-1)
909
+
910
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
911
+ if inputs_embeds is not None and past_key_values is None:
912
+ model_inputs = {"inputs_embeds": inputs_embeds}
913
+ else:
914
+ model_inputs = {"input_ids": input_ids}
915
+
916
+ model_inputs.update(
917
+ {
918
+ "position_ids": position_ids,
919
+ "past_key_values": past_key_values,
920
+ "use_cache": kwargs.get("use_cache"),
921
+ "attention_mask": attention_mask,
922
+ }
923
+ )
924
+ return model_inputs
925
+
926
+ @staticmethod
927
+ def _reorder_cache(past_key_values, beam_idx):
928
+ reordered_past = ()
929
+ for layer_past in past_key_values:
930
+ reordered_past += (
931
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
932
+ )
933
+ return reordered_past
934
+
935
+
936
+ def generate(
937
+ self,
938
+ inputs: Optional[torch.Tensor] = None,
939
+ generation_config: Optional[GenerationConfig] = None,
940
+ streamer = None,
941
+ **kwargs,
942
+ ):
943
+ logits_processor = None
944
+ if generation_config is not None:
945
+ repetition_penalty = kwargs.pop("repetition_penalty", generation_config.repetition_penalty)
946
+ generation_config.repetition_penalty = 1.0
947
+
948
+ if repetition_penalty > 1.0:
949
+ warnings.warn("We highly recommend using OpenAI's frequency and presence penalty instead of the original repetition penalty. The original repetition penalty penalizes prompt tokens, which may lead to various potential issues. Therefore, your repetition penalty coefficient will be transformed into frequency penalty and presence penalty.", UserWarning)
950
+ presence_penalty = repetition_penalty - 1.0
951
+ frequency_penalty = repetition_penalty - 1.0
952
+ logits_processor = LogitsProcessorList(
953
+ [OutputRepetitionPenaltyLogitsProcessor(inputs.size(1), presence_penalty, frequency_penalty, 1.0)]
954
+ )
955
+
956
+ response = super().generate(
957
+ inputs,
958
+ generation_config=generation_config,
959
+ logits_processor=logits_processor,
960
+ streamer=streamer,
961
+ **kwargs,
962
+ )
963
+ if generation_config is not None:
964
+ generation_config.repetition_penalty = repetition_penalty
965
+ return response
966
+
967
+
968
+ def chat(
969
+ self,
970
+ tokenizer,
971
+ messages: List[dict],
972
+ system: str = "You are a helpful assistant.",
973
+ stream=False,
974
+ generation_config: Optional[GenerationConfig]=None):
975
+
976
+ generation_config = generation_config or self.generation_config
977
+ input_ids = make_context(
978
+ model=self, tokenizer=tokenizer, messages=messages,
979
+ system=system, max_new_tokens=generation_config.max_new_tokens
980
+ )
981
+
982
+ if stream:
983
+ streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
984
+ Thread(target=self.generate, kwargs=dict(
985
+ inputs=input_ids, streamer=streamer,
986
+ generation_config=generation_config,
987
+ )).start()
988
+ return streamer
989
+ else:
990
+ outputs = self.generate(input_ids, generation_config=generation_config)
991
+ response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
992
+ return response
993
+
994
+
995
+ class ZhinaoForSequenceClassification(ZhinaoPreTrainedModel):
996
+ def __init__(self, config):
997
+ super().__init__(config)
998
+ self.num_labels = config.num_labels
999
+ self.model = ZhinaoModel(config)
1000
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1001
+
1002
+ # Initialize weights and apply final processing
1003
+ self.post_init()
1004
+
1005
+ def get_input_embeddings(self):
1006
+ return self.model.embed_tokens
1007
+
1008
+ def set_input_embeddings(self, value):
1009
+ self.model.embed_tokens = value
1010
+
1011
+ def forward(
1012
+ self,
1013
+ input_ids: torch.LongTensor = None,
1014
+ attention_mask: Optional[torch.Tensor] = None,
1015
+ position_ids: Optional[torch.LongTensor] = None,
1016
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1017
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1018
+ labels: Optional[torch.LongTensor] = None,
1019
+ use_cache: Optional[bool] = None,
1020
+ output_attentions: Optional[bool] = None,
1021
+ output_hidden_states: Optional[bool] = None,
1022
+ return_dict: Optional[bool] = None,
1023
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1024
+
1025
+
1026
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1027
+
1028
+ transformer_outputs = self.model(
1029
+ input_ids,
1030
+ attention_mask=attention_mask,
1031
+ position_ids=position_ids,
1032
+ past_key_values=past_key_values,
1033
+ inputs_embeds=inputs_embeds,
1034
+ use_cache=use_cache,
1035
+ output_attentions=output_attentions,
1036
+ output_hidden_states=output_hidden_states,
1037
+ return_dict=return_dict,
1038
+ )
1039
+ hidden_states = transformer_outputs[0]
1040
+ logits = self.score(hidden_states)
1041
+
1042
+ if input_ids is not None:
1043
+ batch_size = input_ids.shape[0]
1044
+ else:
1045
+ batch_size = inputs_embeds.shape[0]
1046
+
1047
+ if self.config.pad_token_id is None and batch_size != 1:
1048
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1049
+ if self.config.pad_token_id is None:
1050
+ sequence_lengths = -1
1051
+ else:
1052
+ if input_ids is not None:
1053
+ sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1).to(
1054
+ logits.device
1055
+ )
1056
+ else:
1057
+ sequence_lengths = -1
1058
+
1059
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1060
+
1061
+ loss = None
1062
+ if labels is not None:
1063
+ labels = labels.to(logits.device)
1064
+ if self.config.problem_type is None:
1065
+ if self.num_labels == 1:
1066
+ self.config.problem_type = "regression"
1067
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1068
+ self.config.problem_type = "single_label_classification"
1069
+ else:
1070
+ self.config.problem_type = "multi_label_classification"
1071
+
1072
+ if self.config.problem_type == "regression":
1073
+ loss_fct = MSELoss()
1074
+ if self.num_labels == 1:
1075
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1076
+ else:
1077
+ loss = loss_fct(pooled_logits, labels)
1078
+ elif self.config.problem_type == "single_label_classification":
1079
+ loss_fct = CrossEntropyLoss()
1080
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1081
+ elif self.config.problem_type == "multi_label_classification":
1082
+ loss_fct = BCEWithLogitsLoss()
1083
+ loss = loss_fct(pooled_logits, labels)
1084
+ if not return_dict:
1085
+ output = (pooled_logits,) + transformer_outputs[1:]
1086
+ return ((loss,) + output) if loss is not None else output
1087
+
1088
+ return SequenceClassifierOutputWithPast(
1089
+ loss=loss,
1090
+ logits=pooled_logits,
1091
+ past_key_values=transformer_outputs.past_key_values,
1092
+ hidden_states=transformer_outputs.hidden_states,
1093
+ attentions=transformer_outputs.attentions,
1094
+ )
special_tokens_map.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "pad_token": "<pad>"
3
+ }
tokenization_zhinao.py ADDED
@@ -0,0 +1,257 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import base64
4
+ import tiktoken
5
+ from typing import Collection, Optional, Dict, List, Set, Tuple, Union
6
+ from transformers import PreTrainedTokenizer
7
+ from transformers.utils import PaddingStrategy
8
+ from transformers.tokenization_utils import PreTrainedTokenizer
9
+
10
+
11
+ PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
12
+
13
+
14
+ class SPTokenizer:
15
+ def __init__(self, model_path):
16
+ self.vocab_file = model_path
17
+ self.pad_token = '<pad>'
18
+ self.unk_token = '<unk>'
19
+ self.mask_token = '<mask>'
20
+ self.eod_token = '<eod>'
21
+ self.eop_token = '<eop>'
22
+ self.im_start_token = '<|im_start|>'
23
+ self.im_end_token = '<|im_end|>'
24
+
25
+ ## special_tokens
26
+ self.SPECIAL_TOKENS = (
27
+ self.pad_token,
28
+ self.unk_token,
29
+ self.mask_token,
30
+ self.eod_token,
31
+ self.eop_token,
32
+ '[space2]', '[space3]', '[space4]', '[space8]',
33
+ self.im_start_token, self.im_end_token
34
+ )
35
+ self.bulid_tokenizer()
36
+ self.out = self.output_core_token()
37
+
38
+ self.token2strs = {
39
+ "[space2]": " ",
40
+ "[space3]": " ",
41
+ "[space4]": " ",
42
+ "[space8]": " ",
43
+ }
44
+ self.str2tokens = {v: k for k, v in self.token2strs.items()}
45
+ self.sorted_strs = sorted(list(self.str2tokens.keys()),
46
+ key=lambda x: len(x), reverse=True)
47
+
48
+ ## skip_special_tokens
49
+ self.decode_skip_special_tokens = [
50
+ self.pad_token,
51
+ self.unk_token,
52
+ self.mask_token,
53
+ self.eod_token,
54
+ self.eop_token,
55
+ self.im_start_token,
56
+ self.im_end_token]
57
+ self.decode_skip_special_tokens_ids = [self.convert_token_to_id(token) for token in self.decode_skip_special_tokens]
58
+
59
+ def _load_tiktoken_bpe(self, tiktoken_bpe_file: str):
60
+ with open(tiktoken_bpe_file, "rb") as f:
61
+ contents = f.read()
62
+ return {
63
+ base64.b64decode(token): int(rank)
64
+ for token, rank in (line.split() for line in contents.splitlines() if line)
65
+ }
66
+
67
+ def bulid_tokenizer(self):
68
+ mergeable_ranks = self._load_tiktoken_bpe(self.vocab_file)
69
+ special_tokens = {
70
+ token: index
71
+ for index, token in enumerate(
72
+ self.SPECIAL_TOKENS, start=len(mergeable_ranks)
73
+ )
74
+ }
75
+ encode = tiktoken.Encoding(
76
+ "zhinao",
77
+ pat_str=PAT_STR,
78
+ mergeable_ranks=mergeable_ranks,
79
+ special_tokens=special_tokens
80
+ )
81
+ decoder = {v: k for k, v in mergeable_ranks.items()}
82
+ decoder.update({v: k for k, v in special_tokens.items()})
83
+ decoder_token2id = {v: k for k, v in decoder.items()}
84
+
85
+ self.tokenizer = encode
86
+ self.decoder = decoder
87
+ self.decoder_token2id = decoder_token2id
88
+ self.num_tokens = len(mergeable_ranks) + len(self.SPECIAL_TOKENS)
89
+
90
+ def output_core_token(self):
91
+ """output special tokens"""
92
+ out = {}
93
+ for t in self.SPECIAL_TOKENS:
94
+ out[t] = self.convert_token_to_id(t)
95
+ return out
96
+
97
+ def tokenize(
98
+ self,
99
+ text,
100
+ allowed_special: Union[Set, str] = "all",
101
+ disallowed_special: Union[Collection, str] = ()):
102
+ tokens = []
103
+ text = self.convert(text)
104
+ for idx in self.tokenizer.encode(text, allowed_special=allowed_special, disallowed_special=disallowed_special):
105
+ tokens.append(self.decoder[idx])
106
+ return tokens
107
+
108
+ def encode(self, text, allowed_special="all", disallowed_special=()):
109
+ """text to id"""
110
+ text = self.convert(text)
111
+ return self.tokenizer.encode(text, allowed_special=allowed_special, disallowed_special=disallowed_special)
112
+
113
+ def decode(self, ids, errors="replace"):
114
+ """id to text"""
115
+ text = self.tokenizer.decode(ids, errors=errors)
116
+ return self.deconvert(text)
117
+
118
+ def decode_tokens(self, tokens: List[str]) -> str:
119
+ """
120
+ Converts a sequence of tokens in a single string.
121
+ """
122
+ text = ""
123
+ temp = b""
124
+ for t in tokens:
125
+ if isinstance(t, str):
126
+ if temp:
127
+ text += temp.decode("utf-8", errors="ignore")
128
+ temp = b""
129
+ text += t
130
+ elif isinstance(t, bytes):
131
+ temp += t
132
+ else:
133
+ raise TypeError("token should only be of type bytes or str")
134
+ if temp:
135
+ text += temp.decode("utf-8", errors="ignore")
136
+ return self.deconvert(text)
137
+
138
+ def convert_id_to_token(self, idx):
139
+ return self.decoder[idx]
140
+
141
+ def convert_token_to_id(self, token):
142
+ return self.decoder_token2id[token]
143
+
144
+ def convert(self, text):
145
+ """将文本的特殊字符转换成特殊token"""
146
+ for k in ["[br]", "<br>"]:
147
+ text = text.replace(k, "\n")
148
+ for k in self.sorted_strs:
149
+ if k in text:
150
+ text = text.replace(k, self.str2tokens[k])
151
+ return text
152
+
153
+ def deconvert(self, text):
154
+ """将解码文本恢复原始字符"""
155
+ for t in self.token2strs:
156
+ if t in text:
157
+ text = text.replace(t, self.token2strs[t])
158
+ return text
159
+
160
+
161
+ class ZhinaoTokenizer(PreTrainedTokenizer):
162
+ vocab_files_names = {"vocab_file": "vocab/360.tiktoken"}
163
+ model_input_names = ["input_ids", "attention_mask"]
164
+
165
+ def __init__(self, vocab_file, padding_side="left", clean_up_tokenization_spaces=False, **kwargs):
166
+ self.name = "ZhinaoTokenizer"
167
+ self.vocab_file = vocab_file
168
+ self.tokenizer = SPTokenizer(model_path=vocab_file)
169
+ try:
170
+ kwargs.pop('eos_token')
171
+ kwargs.pop('pad_token')
172
+ kwargs.pop('unk_token')
173
+ except:
174
+ pass
175
+ super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs)
176
+ self.pad_token_id = self.tokenizer.convert_token_to_id(self.tokenizer.pad_token)
177
+ self.eod_id = self.tokenizer.convert_token_to_id(self.tokenizer.eod_token)
178
+ self.im_start_id = self.tokenizer.convert_token_to_id(self.tokenizer.im_start_token)
179
+ self.im_end_id = self.tokenizer.convert_token_to_id(self.tokenizer.im_end_token)
180
+
181
+ @property
182
+ def eop_token(self) -> str:
183
+ return self.tokenizer.eop_token
184
+
185
+ @property
186
+ def eop_token_id(self):
187
+ return self.tokenizer.convert_token_to_id(self.tokenizer.eop_token)
188
+
189
+ @property
190
+ def vocab_size(self):
191
+ return self.tokenizer.num_tokens
192
+
193
+ def get_vocab(self):
194
+ """ Returns vocab as a dict """
195
+ vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
196
+ vocab.update(self.added_tokens_encoder)
197
+ return vocab
198
+
199
+ def tokenize(
200
+ self,
201
+ text: str,
202
+ allowed_special: Union[Set, str] = "all",
203
+ disallowed_special: Union[Collection, str] = (),
204
+ split_special_tokens=False,
205
+ ) -> List[Union[bytes, str]]:
206
+ tokens = []
207
+ for t in self.tokenizer.encode(
208
+ text, allowed_special=allowed_special, disallowed_special=disallowed_special
209
+ ):
210
+ tokens.append(self.tokenizer.decoder[t])
211
+ return tokens
212
+
213
+ def _decode(
214
+ self,
215
+ token_ids: Union[int, List[int]],
216
+ skip_special_tokens: bool = False,
217
+ errors: str = "ignore",
218
+ **kwargs,
219
+ ) -> str:
220
+ if isinstance(token_ids, int):
221
+ token_ids = [token_ids]
222
+ if skip_special_tokens:
223
+ token_ids = [i for i in token_ids if i not in self.tokenizer.decode_skip_special_tokens_ids]
224
+ return self.tokenizer.decode(token_ids, errors=errors)
225
+
226
+ def _tokenize(self, text, **kwargs):
227
+ raise NotImplementedError
228
+
229
+ def _convert_token_to_id(self, token):
230
+ """ Converts a token (str) in an id using the vocab. """
231
+ return self.tokenizer.convert_token_to_id(token)
232
+
233
+ def _convert_id_to_token(self, index):
234
+ """Converts an index (integer) in a token (str) using the vocab. """
235
+ return self.tokenizer.convert_id_to_token(index)
236
+
237
+ def convert_tokens_to_string(self, tokens: List[str]) -> str:
238
+ """
239
+ Converts a sequence of tokens in a single string.
240
+ """
241
+ return self.tokenizer.decode_tokens(tokens)
242
+
243
+ def save_vocabulary(self, save_directory, filename_prefix=None):
244
+ """Save only the vocabulary of the tokenizer (vocabulary). """
245
+ if os.path.isdir(save_directory):
246
+ vocab_file = os.path.join(save_directory, self.vocab_files_names["vocab_file"])
247
+ else:
248
+ vocab_file = save_directory
249
+
250
+ with open(self.vocab_file, 'rb') as fin:
251
+ proto_str = fin.read()
252
+
253
+ os.makedirs(save_directory + "/vocab", exist_ok=True)
254
+ with open(vocab_file, "wb") as writer:
255
+ writer.write(proto_str)
256
+
257
+ return (vocab_file,)
tokenizer_config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {},
3
+ "auto_map": {
4
+ "AutoTokenizer": [
5
+ "tokenization_zhinao.ZhinaoTokenizer",
6
+ null
7
+ ]
8
+ },
9
+ "clean_up_tokenization_spaces": false,
10
+ "do_lower_case": false,
11
+ "eos_token": "<eod>",
12
+ "model_max_length": 8192,
13
+ "pad_token": "<pad>",
14
+ "padding_side": "right",
15
+ "remove_space": false,
16
+ "tokenizer_class": "ZhinaoTokenizer",
17
+ "unk_token": "<unk>",
18
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}"
19
+ }
vocab/360.tiktoken ADDED
The diff for this file is too large to render. See raw diff