qgallouedec HF staff commited on
Commit
73e69d2
1 Parent(s): 0fd175e

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - ReachCube-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: TQC
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: ReachCube-v0
16
+ type: ReachCube-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -88.83 +/- 25.22
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **TQC** Agent playing **ReachCube-v0**
25
+ This is a trained model of a **TQC** agent playing **ReachCube-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo tqc --env ReachCube-v0 -orga qgallouedec -f logs/
47
+ python -m rl_zoo3.enjoy --algo tqc --env ReachCube-v0 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo tqc --env ReachCube-v0 -orga qgallouedec -f logs/
53
+ python -m rl_zoo3.enjoy --algo tqc --env ReachCube-v0 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo tqc --env ReachCube-v0 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo tqc --env ReachCube-v0 -f logs/ -orga qgallouedec
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('n_envs', 16),
66
+ ('n_timesteps', 10000000.0),
67
+ ('policy', 'MultiInputPolicy'),
68
+ ('use_sde', True),
69
+ ('normalize', False)])
70
+ ```
71
+
72
+ # Environment Arguments
73
+ ```python
74
+ {'observation_mode': 'state', 'render_mode': 'rgb_array'}
75
+ ```
args.yml ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - tqc
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - ReachCube-v0
10
+ - - env_kwargs
11
+ - observation_mode: state
12
+ - - eval_env_kwargs
13
+ - null
14
+ - - eval_episodes
15
+ - 5
16
+ - - eval_freq
17
+ - 25000
18
+ - - gym_packages
19
+ - - gym_lowcostrobot
20
+ - - hyperparams
21
+ - null
22
+ - - log_folder
23
+ - logs
24
+ - - log_interval
25
+ - -1
26
+ - - max_total_trials
27
+ - null
28
+ - - n_eval_envs
29
+ - 1
30
+ - - n_evaluations
31
+ - null
32
+ - - n_jobs
33
+ - 1
34
+ - - n_startup_trials
35
+ - 10
36
+ - - n_timesteps
37
+ - -1
38
+ - - n_trials
39
+ - 500
40
+ - - no_optim_plots
41
+ - false
42
+ - - num_threads
43
+ - -1
44
+ - - optimization_log_path
45
+ - null
46
+ - - optimize_hyperparameters
47
+ - false
48
+ - - progress
49
+ - false
50
+ - - pruner
51
+ - median
52
+ - - sampler
53
+ - tpe
54
+ - - save_freq
55
+ - -1
56
+ - - save_replay_buffer
57
+ - false
58
+ - - seed
59
+ - 1136752841
60
+ - - storage
61
+ - null
62
+ - - study_name
63
+ - null
64
+ - - tensorboard_log
65
+ - ''
66
+ - - track
67
+ - false
68
+ - - trained_agent
69
+ - ''
70
+ - - truncate_last_trajectory
71
+ - true
72
+ - - uuid
73
+ - false
74
+ - - vec_env
75
+ - dummy
76
+ - - verbose
77
+ - 1
78
+ - - wandb_entity
79
+ - null
80
+ - - wandb_project_name
81
+ - sb3
82
+ - - wandb_tags
83
+ - []
config.yml ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - n_envs
3
+ - 16
4
+ - - n_timesteps
5
+ - 10000000.0
6
+ - - policy
7
+ - MultiInputPolicy
8
+ - - use_sde
9
+ - true
env_kwargs.yml ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ observation_mode: state
2
+ render_mode: rgb_array
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62c24c30e8305c5c256e7b514ecae774ba762e2adee6290ee23e7d812cf8703c
3
+ size 634168
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -88.82967179999999, "std_reward": 25.21824856666716, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-13T14:19:17.697076"}
tqc-ReachCube-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c466b6744c30b156789d3c18d571c61a723e6343abdded782d6d246b62c7ead
3
+ size 3417949
tqc-ReachCube-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.3.2
tqc-ReachCube-v0/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67307836e6df450c7bdac0b9ab034276a1948724858a89d8368afad7e721092c
3
+ size 589975
tqc-ReachCube-v0/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c50f4b4b53783ddcbae9e951faaefadb82f844c6edc6d384c6e9d49c8735107
3
+ size 1255594
tqc-ReachCube-v0/data ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMQAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
5
+ "__module__": "sb3_contrib.tqc.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function MultiInputPolicy.__init__ at 0x7fb40930f7f0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fb409313dc0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ "use_sde": true
14
+ },
15
+ "num_timesteps": 274912,
16
+ "_total_timesteps": 10000000,
17
+ "_num_timesteps_at_start": 0,
18
+ "seed": 0,
19
+ "action_noise": null,
20
+ "start_time": 1718287943030623139,
21
+ "learning_rate": 0.0003,
22
+ "tensorboard_log": null,
23
+ "_last_obs": null,
24
+ "_last_episode_starts": {
25
+ ":type:": "<class 'numpy.ndarray'>",
26
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
27
+ },
28
+ "_last_original_obs": {
29
+ ":type:": "<class 'collections.OrderedDict'>",
30
+ ":serialized:": "gAWVrwQAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojAhhcm1fcXBvc5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAQAAAAAAAEI6vr9fwgi/hDG0PjyM3D4yf4a+FyLGv86q0b8AKxS/z2TKPmahyD4jfCC/rg2yv21wur8JGX6+2BKjPDNNsT5xYCG/n6vGv3x8wr/I+u6+JZMIPnqKzD7kHCS/0NWsv6Lp1b9jmR+/Mgm6PnxMmD5yB2C/mY++v7E0xb8969++YQIMPZcbsj3x9gm/ZT/Hv+nvu7/y2Ny++qMRPptzDT8cAeO+GJKuv98Ulb/YKxO/KHZFPqajNT7V88C+mvSDv4j/o7+5SQ2/phbDPhozrD3NkCq/HUGWv2rD5L+sjMC+x8sxPlV+9T4vIb++dL+/v9S34L8ZC46+nUSOPfdyAz88Zze/stanv70Mk7+ZYye/u+3PPvkj0j4V4va+VwjMv5edvb8LGYa+8IZAPtuKQD5VSC6/z2+3v8o/tr8E1NS+8sAvPir16j6ykQi/riWqv4P5yb+KWYi+MCB3PsipGD+EbTm/kz67v4dT0b9fBQe/XXCUPvjByD4LayS/JWapv5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsGhpSMAUOUdJRSlIwIYXJtX3F2ZWyUaAcoloABAAAAAAAAcuRNwIKNqj9m9DHAxng8QJEln8AntJ7Aquupv7AD4r9pLTdA+gJzwEGXnkC8O6DA55BZwA90f769naC+vCgXwGpeoECCOY9AFEdmwFIU9T43saO+rqo1wLoflUDxEJ7AVxHIvziiYD3YYV2+Jk4OQOgylEDZfZzAiUsnwNhIur+Bn0dA1ZmrQBXhk0AGFJ7ACthkwKzAgD0W2RNAIaGxQBkGoEBDvp7Af5EAQKubkUBkY9G/2sLFwPSjoEBlc6DAVUA/wG39AcCYL/K/2EW5wJuTn0ADFp9AbNb0vx7iFkAdb2a/WPRSQKaKhUCjy6FAGFgcwBUCpL/94CTA+1GOwNzlk0BbtaBAae6Uv0dX+D/pRz7AeEdEQHzKlEBSyJ/A94ZSwBj1BECnVWLAWE+OQGj6n8C6bHPAXU9nwLKslj6g6dm/pgV/QHM7oMB+hZ3A28XGv8vDcEAtfPc+2JYZwMTgnsBrjp7A/DC8vzm+NT53QinAUWvqv5yqlMC5Q6JAlGgOSxBLBoaUaBJ0lFKUjAhjdWJlX3Bvc5RoByiWwAAAAAAAAACy0pW9nIhqPvR6dTxKybS9c4fzPfR6dTzXS9k9YbUMPvR6dTy73Qe7WZAGPvR6dTxqqF29w432PfR6dTx5evE91hfqPfR6dTxbLtm96AA+PvR6dTxsNkW9IIxYPvR6dTzQWw2+KqMePvR6dTyWYJI9GR9RPvR6dTzX0Z89YNIRPvR6dTy2kt+9oS4hPvR6dTwcd7O9DapnPvR6dTxi73w6/NVqPvR6dTyi7go9cfMvPvR6dTzUiya98ic/PvR6dTyUaA5LEEsDhpRoEnSUUpR1Lg==",
31
+ "arm_qpos": "[[-1.4861529 -0.53421587 0.35194027 0.4307574 -0.26268917 -1.5479153 ]\n [-1.638025 -0.5787811 0.39530036 0.39185637 -0.6268942 -1.3910425 ]\n [-1.456556 -0.24814238 0.01990645 0.3462921 -0.6303778 -1.5521125 ]\n [-1.519424 -0.46675706 0.13337381 0.399494 -0.64106584 -1.350275 ]\n [-1.6711924 -0.62343425 0.3633514 0.29745853 -0.8751136 -1.4887573 ]\n [-1.5406705 -0.4373416 0.03418196 0.08696669 -0.5389243 -1.5566221 ]\n [-1.468259 -0.43134266 0.14222708 0.55254525 -0.44336784 -1.3638334 ]\n [-1.1646994 -0.57488775 0.19283354 0.17738208 -0.3768603 -1.0309021 ]\n [-1.2812357 -0.55190617 0.38103217 0.08408184 -0.666272 -1.1738621 ]\n [-1.7872136 -0.37607324 0.17362891 0.47947946 -0.37330005 -1.4980302 ]\n [-1.75561 -0.27742842 0.06946681 0.513473 -0.716419 -1.3112395 ]\n [-1.1488262 -0.6538635 0.4061106 0.4104307 -0.48219362 -1.5940045 ]\n [-1.4813718 -0.2619098 0.18801475 0.18802969 -0.6807912 -1.4330996 ]\n [-1.4238217 -0.41568005 0.17163447 0.4589017 -0.53347313 -1.3292749 ]\n [-1.577927 -0.26630813 0.24133372 0.59634066 -0.7243273 -1.4628471 ]\n [-1.6353616 -0.5274257 0.28991976 0.39210486 -0.64225835 -1.3234297 ]]",
32
+ "arm_qvel": "[[-3.2170682 1.3324435 -2.780542 2.9448714 -4.9733357 -4.9594913 ]\n [-1.3275044 -1.7657375 2.8621466 -3.7970567 4.9559636 -5.007292 ]\n [-3.3994691 -0.24946617 -0.31370345 -2.3618612 5.011525 4.47577 ]\n [-3.5980883 0.47867066 -0.31971142 -2.8385425 4.660123 -4.939568 ]\n [-1.5630292 0.0548422 -0.21619356 2.2235198 4.631214 -4.8903623 ]\n [-2.6139853 -1.455348 3.1191103 5.3625283 4.621226 -4.9399443 ]\n [-3.575686 0.06286749 2.3101249 5.550919 5.0007443 -4.9607253 ]\n [ 2.0088804 4.5502524 -1.6358457 -6.1800356 5.020014 -5.0140862 ]\n [-2.9883015 -2.031093 -1.8920774 -5.789776 4.9867682 4.971437 ]\n [-1.9127936 2.357551 -0.90013295 3.2961636 4.173175 5.056108 ]\n [-2.4428768 -1.2813135 -2.5762322 -4.4475074 4.621809 5.022138 ]\n [-1.1635257 1.9401635 -2.973139 3.066862 4.6497173 -4.993203 ]\n [-3.2894876 2.0774593 -3.5364778 4.4471855 -4.999317 -3.8035111 ]\n [-3.614219 0.2942863 -1.7024422 3.9847198 -5.007257 -4.9225454 ]\n [-1.5529131 3.7619503 0.48336926 -2.3998318 -4.964937 -4.954885 ]\n [-1.4702449 0.17748345 -2.6446817 -1.8314 -4.6458263 5.070767 ]]",
33
+ "cube_pos": "[[-0.07315578 0.22903675 0.01498293]\n [-0.08827455 0.11891069 0.01498293]\n [ 0.10610168 0.13741066 0.01498293]\n [-0.00207315 0.13141002 0.01498293]\n [-0.05411569 0.12038758 0.01498293]\n [ 0.11790938 0.11430328 0.01498293]\n [-0.10604545 0.18555033 0.01498293]\n [-0.0481476 0.21147203 0.01498293]\n [-0.13804555 0.1549193 0.01498293]\n [ 0.07147329 0.20422019 0.01498293]\n [ 0.07803696 0.14240408 0.01498293]\n [-0.10916655 0.15740444 0.01498293]\n [-0.08762953 0.22623463 0.01498293]\n [ 0.00096487 0.22933191 0.01498293]\n [ 0.03391898 0.1718271 0.01498293]\n [-0.04066069 0.18667582 0.01498293]]"
34
+ },
35
+ "_episode_num": 544,
36
+ "use_sde": true,
37
+ "sde_sample_freq": -1,
38
+ "_current_progress_remaining": 0.9725104,
39
+ "_stats_window_size": 100,
40
+ "ep_info_buffer": {
41
+ ":type:": "<class 'collections.deque'>",
42
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFcX/t6X0GyMAWyUTfQBjAF0lEdAZ09llK9PDnV9lChoBkfAUA58eCCjDmgHTfQBaAhHQGdLqOcUdrB1fZQoaAZHwEq1VbzK9wpoB030AWgIR0BnR/SncclxdX2UKGgGR8BMSnlOoHcDaAdN9AFoCEdAZ0OXyAhB7nV9lChoBkfAWU20w8GLUGgHTfQBaAhHQGkv1XeWOZN1fZQoaAZHwFaiEUCaJANoB030AWgIR0BpLBIQOFxodX2UKGgGR8BDCQnpjc2zaAdN9AFoCEdAaShZtelbeXV9lChoBkfAUoe76Hj6vmgHTfQBaAhHQGkkoJAt4A11fZQoaAZHwFRtdD6WPcVoB030AWgIR0BpIOpCKJl8dX2UKGgGR8BYzrYkE9t/aAdN9AFoCEdAaR086mwaBXV9lChoBkfAU5AXWOIZZWgHTfQBaAhHQGkZiMHbAUN1fZQoaAZHwFJKTDwYtQNoB030AWgIR0BpFdlAeJYUdX2UKGgGR8BYtUSuhbnpaAdN9AFoCEdAaRIk690zTHV9lChoBkfAUtrO+qR2bGgHTfQBaAhHQGkOdZq20At1fZQoaAZHwFBgh2GIsRRoB030AWgIR0BpCr56+nIidX2UKGgGR8BWbhQizLOiaAdN9AFoCEdAaQbJOnEVFnV9lChoBkfAVIDhl18stmgHTfQBaAhHQGkC60Y0l7d1fZQoaAZHwFuMEkjX4CZoB030AWgIR0Bo/y6nR9gGdX2UKGgGR8Bb/pHd43WGaAdN9AFoCEdAaPt6qKgqVnV9lChoBkfASyvYlIEr5WgHTfQBaAhHQGj3HdGiHqN1fZQoaAZHwFCb23KB/ZxoB030AWgIR0BqQoDaGpMpdX2UKGgGR8BXhl7hNucdaAdN9AFoCEdAaj69alk6LnV9lChoBkfAUkSM4tHx0GgHTfQBaAhHQGo7BO58Sf11fZQoaAZHwFcGJ9iMHbBoB030AWgIR0BqN0ujASFodX2UKGgGR8Bb15/Tb349aAdN9AFoCEdAajOVSGahH3V9lChoBkfAW46cUdq+J2gHTfQBaAhHQGov59d/rjZ1fZQoaAZHwFRSr8iwB5poB030AWgIR0BqLDNyHVPOdX2UKGgGR8BVkWMGX5WSaAdN9AFoCEdAaiiD4gzP8nV9lChoBkfAV3tzfaYeDGgHTfQBaAhHQGokz3IuGsV1fZQoaAZHwFtnBNVR1oxoB030AWgIR0BqISAvtdAxdX2UKGgGR8BQ8GOU+s5oaAdN9AFoCEdAah1pCa7Va3V9lChoBkfAWeIM5OrQxGgHTfQBaAhHQGoZc8La24N1fZQoaAZHwEPlYPoV2zRoB030AWgIR0BqFZW912aEdX2UKGgGR8BWNeYx+KCQaAdN9AFoCEdAahHZGrjo6nV9lChoBkfAWz+v7m+0xGgHTfQBaAhHQGoOJO32EkB1fZQoaAZHwFOivnKW9lFoB030AWgIR0BqCcgMc6vJdX2UKGgGR8BdHrMHKOktaAdN9AFoCEdAa0BshxHXmXV9lChoBkfAWDy9nK4hEGgHTfQBaAhHQGs8qREF4cF1fZQoaAZHwFVwbaRISUVoB030AWgIR0BrOPEAHVwxdX2UKGgGR8BYinEhq0tzaAdN9AFoCEdAazU3uuzQeHV9lChoBkfAWfXx0+1SfmgHTfQBaAhHQGsxgWac7Qt1fZQoaAZHwF322M85jpdoB030AWgIR0BrLdP557gLdX2UKGgGR8BTSY1DSgGsaAdN9AFoCEdAayofmLcbi3V9lChoBkfAWR3O4XoC+2gHTfQBaAhHQGsmcBEKE391fZQoaAZHwFQ7WEK3NLVoB030AWgIR0BrIrupjtojdX2UKGgGR8BLMhz3h4t6aAdN9AFoCEdAax8MPz4DcXV9lChoBkfAWCuVY6nzhGgHTfQBaAhHQGsbVRLsa891fZQoaAZHwEsUP9UCJXRoB030AWgIR0BrF1/MGHHndX2UKGgGR8BTomZuyeI3aAdN9AFoCEdAaxOByS3b23V9lChoBkfAUAFdWyTpxGgHTfQBaAhHQGsPxTsIE8t1fZQoaAZHwEQmw5/9YOloB030AWgIR0BrDBEDyOJddX2UKGgGR8BI0WldkauPaAdN9AFoCEdAawe0IkZ75XV9lChoBkfAVQ7ohY/3WWgHTfQBaAhHQGy4/ustCiR1fZQoaAZHwEyDqUu+RHRoB030AWgIR0BstTt5UtI1dX2UKGgGR8BWIIX9BKL9aAdN9AFoCEdAbLGDAaef7XV9lChoBkfAWg8X668QI2gHTfQBaAhHQGytyfL9uP51fZQoaAZHwEgXM23rleZoB030AWgIR0BsqhOgxrSFdX2UKGgGR8BJguUD+zdDaAdN9AFoCEdAbKZmNipeeHV9lChoBkfAVP3ZsbedkWgHTfQBaAhHQGyisd1dPcl1fZQoaAZHwFfHVXmvGIdoB030AWgIR0BsnwJZ4fOldX2UKGgGR8BTvkhV2icoaAdN9AFoCEdAbJtN6gM+eXV9lChoBkfAVUSTgVGkOGgHTfQBaAhHQGyXnnuAqd91fZQoaAZHwE8xw2l2vB9oB030AWgIR0Bsk+dNFjNIdX2UKGgGR8BY1dgKF7D3aAdN9AFoCEdAbI/yCnP3SXV9lChoBkfAU87GXHBDX2gHTfQBaAhHQGyME/8l5W11fZQoaAZHwFLmnq3VkMFoB030AWgIR0BsiFdZ7ojfdX2UKGgGR8BRiQxnFo+OaAdN9AFoCEdAbISjRlYlp3V9lChoBkfASJuHrQgLZ2gHTfQBaAhHQGyARmK64Dt1fZQoaAZHwFevHyVfNRpoB030AWgIR0Bty5+UhV2idX2UKGgGR8BbWOmJm/WUaAdN9AFoCEdAbcfc8kleGHV9lChoBkfAWr6bPQfIS2gHTfQBaAhHQG3EJI+W4Vh1fZQoaAZHwFA7PVd5Y5loB030AWgIR0BtwGt6ol2NdX2UKGgGR8BCyzdk8RthaAdN9AFoCEdAbby1JlJ6IHV9lChoBkfAXSFJd0JWvWgHTfQBaAhHQG25B8IAwPB1fZQoaAZHwEmE4YJmdy1oB030AWgIR0BttVNvfj0ddX2UKGgGR8BEFLK3d9DyaAdN9AFoCEdAbbGj8k2P1nV9lChoBkfAVWq3XqZ+hGgHTfQBaAhHQG2t74SHuZ11fZQoaAZHwF3AC4jKPn1oB030AWgIR0BtqkAeaKDTdX2UKGgGR8BLlDn3cpLFaAdN9AFoCEdAbaaI9C/oJXV9lChoBkfAWia9ytFKCmgHTfQBaAhHQG2ik9lmOEN1fZQoaAZHwFBenkkrwvxoB030AWgIR0BtnrXvphWpdX2UKGgGR8BOnsijcmBwaAdN9AFoCEdAbZr5RCQcP3V9lChoBkfAWwOPo3aSLmgHTfQBaAhHQG2XRQaaTfR1fZQoaAZHwFOyXq7iADtoB030AWgIR0Btkugi/wiJdX2UKGgGR8BcKa4c3l0YaAdN9AFoCEdAbt4176YVqXV9lChoBkfAUIs04zabnWgHTfQBaAhHQG7acoH9m6J1fZQoaAZHwFMy619fCyhoB030AWgIR0Bu1roOhCdCdX2UKGgGR8BOeJvxYq5LaAdN9AFoCEdAbtMAxzq8lHV9lChoBkfAUeVA+pwS8WgHTfQBaAhHQG7PSmQ8wHt1fZQoaAZHwEWxSJCSidtoB030AWgIR0Buy5zq8lHCdX2UKGgGR8BIop2MbWEsaAdN9AFoCEdAbsfogV45cXV9lChoBkfAVlmDOC5Et2gHTfQBaAhHQG7EOPV/c351fZQoaAZHwFcsEfkmx+toB030AWgIR0BuwIS6DoQndX2UKGgGR8BSOt7F85S4aAdN9AFoCEdAbrzVT72tdXV9lChoBkfAT/lf1Hvtt2gHTfQBaAhHQG65Hhjvuw51fZQoaAZHwFpz1HOKO1hoB030AWgIR0ButSjHn2ZidX2UKGgGR8Bad8Jlar3kaAdN9AFoCEdAbrFKvmoze3V9lChoBkfAWL624NI9T2gHTfQBaAhHQG6tjgqEvkB1fZQoaAZHwFEl2eg+QltoB030AWgIR0BuqdnEl3QldX2UKGgGR8BQDkHt4RmLaAdN9AFoCEdAbqV81n/T9nVlLg=="
43
+ },
44
+ "ep_success_buffer": {
45
+ ":type:": "<class 'collections.deque'>",
46
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
47
+ },
48
+ "_n_updates": 17175,
49
+ "observation_space": {
50
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
51
+ ":serialized:": "gAWVzAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojAhhcm1fcXBvc5SMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBgAAAAAAAAABAQEBAQGUaBOMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBwolgYAAAAAAAAAAQEBAQEBlGggSwaFlGgkdJRSlIwGX3NoYXBllEsGhZSMA2xvd5RoHCiWGAAAAAAAAADbD0nA2w9JwNsPScDbD0nA2w9JwNsPScCUaBZLBoWUaCR0lFKUjARoaWdolGgcKJYYAAAAAAAAANsPSUDbD0lA2w9JQNsPSUDbD0lA2w9JQJRoFksGhZRoJHSUUpSMCGxvd19yZXBylIwKLTMuMTQxNTkyN5SMCWhpZ2hfcmVwcpSMCTMuMTQxNTkyN5SMCl9ucF9yYW5kb22UTnVijAhhcm1fcXZlbJRoDSmBlH2UKGgQaBZoGWgcKJYGAAAAAAAAAAEBAQEBAZRoIEsGhZRoJHSUUpRoJ2gcKJYGAAAAAAAAAAEBAQEBAZRoIEsGhZRoJHSUUpRoLEsGhZRoLmgcKJYYAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwZRoFksGhZRoJHSUUpRoM2gcKJYYAAAAAAAAAAAAIEEAACBBAAAgQQAAIEEAACBBAAAgQZRoFksGhZRoJHSUUpRoOIwFLTEwLjCUaDqMBDEwLjCUaDxOdWKMCGN1YmVfcG9zlGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
52
+ "spaces": "OrderedDict([('arm_qpos', Box(-3.1415927, 3.1415927, (6,), float32)), ('arm_qvel', Box(-10.0, 10.0, (6,), float32)), ('cube_pos', Box(-10.0, 10.0, (3,), float32))])",
53
+ "_shape": null,
54
+ "dtype": null,
55
+ "_np_random": null
56
+ },
57
+ "action_space": {
58
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
59
+ ":serialized:": "gAWVfgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBgAAAAAAAAABAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgYAAAAAAAAAAQEBAQEBlGgVSwaFlGgZdJRSlIwGX3NoYXBllEsGhZSMA2xvd5RoESiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLBoWUaBl0lFKUjARoaWdolGgRKJYYAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sGhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEF9fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGg9ihDjYZWmt15YCS1Fllk0taEajANpbmOUihCpc3hEvDOBWIIa9zrb2o1BdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==",
60
+ "dtype": "float32",
61
+ "bounded_below": "[ True True True True True True]",
62
+ "bounded_above": "[ True True True True True True]",
63
+ "_shape": [
64
+ 6
65
+ ],
66
+ "low": "[-1. -1. -1. -1. -1. -1.]",
67
+ "high": "[1. 1. 1. 1. 1. 1.]",
68
+ "low_repr": "-1.0",
69
+ "high_repr": "1.0",
70
+ "_np_random": "Generator(PCG64)"
71
+ },
72
+ "n_envs": 1,
73
+ "buffer_size": 1,
74
+ "batch_size": 256,
75
+ "learning_starts": 100,
76
+ "tau": 0.005,
77
+ "gamma": 0.99,
78
+ "gradient_steps": 1,
79
+ "optimize_memory_usage": false,
80
+ "replay_buffer_class": {
81
+ ":type:": "<class 'abc.ABCMeta'>",
82
+ ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=",
83
+ "__module__": "stable_baselines3.common.buffers",
84
+ "__annotations__": "{'observation_space': <class 'gymnasium.spaces.dict.Dict'>, 'obs_shape': typing.Dict[str, typing.Tuple[int, ...]], 'observations': typing.Dict[str, numpy.ndarray], 'next_observations': typing.Dict[str, numpy.ndarray]}",
85
+ "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
86
+ "__init__": "<function DictReplayBuffer.__init__ at 0x7fb409cc23b0>",
87
+ "add": "<function DictReplayBuffer.add at 0x7fb409cc2440>",
88
+ "sample": "<function DictReplayBuffer.sample at 0x7fb409cc24d0>",
89
+ "_get_samples": "<function DictReplayBuffer._get_samples at 0x7fb409cc2560>",
90
+ "__abstractmethods__": "frozenset()",
91
+ "_abc_impl": "<_abc._abc_data object at 0x7fb409cbc7c0>"
92
+ },
93
+ "replay_buffer_kwargs": {},
94
+ "train_freq": {
95
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
96
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
97
+ },
98
+ "use_sde_at_warmup": false,
99
+ "target_entropy": -6.0,
100
+ "ent_coef": "auto",
101
+ "target_update_interval": 1,
102
+ "top_quantiles_to_drop_per_net": 2,
103
+ "lr_schedule": {
104
+ ":type:": "<class 'function'>",
105
+ ":serialized:": "gAWV0QMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjHAvZnN4L3FnYWxsb3VlZGVjL21pbmljb25kYTMvZW52cy9neW1fbG93Y29zdHJvYm90L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwIPGxhbWJkYT6US2FDAgwAlIwOdmFsdWVfc2NoZWR1bGWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxwL2ZzeC9xZ2FsbG91ZWRlYy9taW5pY29uZGEzL2VudnMvZ3ltX2xvd2Nvc3Ryb2JvdC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBhoD4wMX19xdWFsbmFtZV9flIwhZ2V0X3NjaGVkdWxlX2ZuLjxsb2NhbHM+LjxsYW1iZGE+lIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlGgCKGgHKEsBSwBLAEsBSwFLE0MEiABTAJRoCSmMAV+UhZRoDowEZnVuY5RLhUMCBAGUjAN2YWyUhZQpdJRSlGgVTk5oHSlSlIWUdJRSlGgjaD19lH2UKGgYaDRoJowZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RoKH2UaCpOaCtOaCxoGWgtTmguaDBHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMIWUUpSFlGhFXZRoR32UdYaUhlIwLg=="
106
+ },
107
+ "batch_norm_stats": [],
108
+ "batch_norm_stats_target": []
109
+ }
tqc-ReachCube-v0/ent_coef_optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17b7ed5d998129b0796ae12e6def14aeb19772f9668df0d97db962faa2a6933b
3
+ size 1940
tqc-ReachCube-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0911d58b701bd6ae234a5829d5d010bb5602eed2875cf42b01c6dc1d7deb3bc
3
+ size 1548985
tqc-ReachCube-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5384239c46a43e144ebbd9ef0e393566e8bf12e44fcc65c33c09f51535b3485
3
+ size 1180
tqc-ReachCube-v0/system_info.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.0-1048-aws-x86_64-with-glibc2.31 # 53~20.04.1-Ubuntu SMP Wed Oct 4 16:44:20 UTC 2023
2
+ - Python: 3.10.14
3
+ - Stable-Baselines3: 2.3.2
4
+ - PyTorch: 2.3.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.0.0
8
+ - Gymnasium: 0.29.1
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9840e2b54bd09c949aaab0e7820b9a9dc8252b66c499fdb51fc72189759b61f3
3
+ size 25881