Quentin Gallouédec commited on
Commit
db5318d
1 Parent(s): cbb289a

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Hopper-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: TD3
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: Hopper-v3
16
+ type: Hopper-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 3592.92 +/- 5.20
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **TD3** Agent playing **Hopper-v3**
25
+ This is a trained model of a **TD3** agent playing **Hopper-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo td3 --env Hopper-v3 -orga qgallouedec -f logs/
47
+ python -m rl_zoo3.enjoy --algo td3 --env Hopper-v3 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo td3 --env Hopper-v3 -orga qgallouedec -f logs/
53
+ python -m rl_zoo3.enjoy --algo td3 --env Hopper-v3 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo td3 --env Hopper-v3 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo td3 --env Hopper-v3 -f logs/ -orga qgallouedec
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 256),
66
+ ('gradient_steps', 1),
67
+ ('learning_rate', 0.0003),
68
+ ('learning_starts', 10000),
69
+ ('n_timesteps', 1000000.0),
70
+ ('noise_std', 0.1),
71
+ ('noise_type', 'normal'),
72
+ ('policy', 'MlpPolicy'),
73
+ ('train_freq', 1),
74
+ ('normalize', False)])
75
+ ```
args.yml ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - td3
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - Hopper-v3
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 20
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - []
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - logs
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 5
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - -1
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 1602191641
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - runs/Hopper-v3__td3__1602191641__1676760550
64
+ - - track
65
+ - true
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - openrlbenchmark
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - wandb_tags
81
+ - []
82
+ - - yaml_file
83
+ - null
config.yml ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 256
4
+ - - gradient_steps
5
+ - 1
6
+ - - learning_rate
7
+ - 0.0003
8
+ - - learning_starts
9
+ - 10000
10
+ - - n_timesteps
11
+ - 1000000.0
12
+ - - noise_std
13
+ - 0.1
14
+ - - noise_type
15
+ - normal
16
+ - - policy
17
+ - MlpPolicy
18
+ - - train_freq
19
+ - 1
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2fa45a5c690ef08547462bab7f55782989436b88eddd564f72837721ce9cbc29
3
+ size 1475629
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 3592.9213724, "std_reward": 5.201191015185154, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-28T17:33:10.096221"}
td3-Hopper-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d18c5eb4a8445a9605d6120ce5391e7a663eb474d6a40353798aeb96e39f2d8
3
+ size 6115041
td3-Hopper-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0a6
td3-Hopper-v3/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72c8d06a8de4475dd8032474f4e92690702cb42e8104c9c7999c7f40e78f0b87
3
+ size 1012911
td3-Hopper-v3/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5c7cf713cd816137af2f169c45039a3ba86592b88fbea37b30341488b723913
3
+ size 2035001
td3-Hopper-v3/data ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.td3.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function TD3Policy.__init__ at 0x7f74c4d70af0>",
8
+ "_build": "<function TD3Policy._build at 0x7f74c4d70b80>",
9
+ "_get_constructor_parameters": "<function TD3Policy._get_constructor_parameters at 0x7f74c4d70c10>",
10
+ "make_actor": "<function TD3Policy.make_actor at 0x7f74c4d70ca0>",
11
+ "make_critic": "<function TD3Policy.make_critic at 0x7f74c4d70d30>",
12
+ "forward": "<function TD3Policy.forward at 0x7f74c4d70dc0>",
13
+ "_predict": "<function TD3Policy._predict at 0x7f74c4d70e50>",
14
+ "set_training_mode": "<function TD3Policy.set_training_mode at 0x7f74c4d70ee0>",
15
+ "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc._abc_data object at 0x7f74c4d77100>"
17
+ },
18
+ "verbose": 1,
19
+ "policy_kwargs": {},
20
+ "observation_space": {
21
+ ":type:": "<class 'gym.spaces.box.Box'>",
22
+ ":serialized:": "gAWVFQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLC4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWWAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgKSwuFlIwBQ5R0lFKUjARoaWdolGgSKJZYAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaApLC4WUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYLAAAAAAAAAAAAAAAAAAAAAAAAlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwuFlGgVdJRSlIwNYm91bmRlZF9hYm92ZZRoEiiWCwAAAAAAAAAAAAAAAAAAAAAAAJRoIUsLhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
23
+ "dtype": "float64",
24
+ "_shape": [
25
+ 11
26
+ ],
27
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
28
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf]",
29
+ "bounded_below": "[False False False False False False False False False False False]",
30
+ "bounded_above": "[False False False False False False False False False False False]",
31
+ "_np_random": null
32
+ },
33
+ "action_space": {
34
+ ":type:": "<class 'gym.spaces.box.Box'>",
35
+ ":serialized:": "gAWVGAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5RoLYwUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwHTVQxOTkzN5SMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5RoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
36
+ "dtype": "float32",
37
+ "_shape": [
38
+ 3
39
+ ],
40
+ "low": "[-1. -1. -1.]",
41
+ "high": "[1. 1. 1.]",
42
+ "bounded_below": "[ True True True]",
43
+ "bounded_above": "[ True True True]",
44
+ "_np_random": "RandomState(MT19937)"
45
+ },
46
+ "n_envs": 1,
47
+ "num_timesteps": 1000000,
48
+ "_total_timesteps": 1000000,
49
+ "_num_timesteps_at_start": 0,
50
+ "seed": 0,
51
+ "action_noise": {
52
+ ":type:": "<class 'stable_baselines3.common.noise.NormalActionNoise'>",
53
+ ":serialized:": "gAWVCgEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMEU5vcm1hbEFjdGlvbk5vaXNllJOUKYGUfZQojANfbXWUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwOFlIwBQ5R0lFKUjAZfc2lnbWGUaAgolhgAAAAAAAAAmpmZmZmZuT+amZmZmZm5P5qZmZmZmbk/lGgPSwOFlGgTdJRSlHViLg==",
54
+ "_mu": "[0. 0. 0.]",
55
+ "_sigma": "[0.1 0.1 0.1]"
56
+ },
57
+ "start_time": 1676760553412880408,
58
+ "learning_rate": {
59
+ ":type:": "<class 'function'>",
60
+ ":serialized:": "gAWVjwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL3FnYWxsb3VlZGVjL2Vudl9iZW5jaG1hcmsvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
61
+ },
62
+ "tensorboard_log": "runs/Hopper-v3__td3__1602191641__1676760550/Hopper-v3",
63
+ "lr_schedule": {
64
+ ":type:": "<class 'function'>",
65
+ ":serialized:": "gAWVjwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL3FnYWxsb3VlZGVjL2Vudl9iZW5jaG1hcmsvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
66
+ },
67
+ "_last_obs": null,
68
+ "_last_episode_starts": {
69
+ ":type:": "<class 'numpy.ndarray'>",
70
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
71
+ },
72
+ "_last_original_obs": {
73
+ ":type:": "<class 'numpy.ndarray'>",
74
+ ":serialized:": "gAWVzQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZYAAAAAAAAAP9/Rn5JiPc/4e9MU0XOmz9kA725kT+sv+dX3eCcEti/zlFUlDWN5j+MOroucHQDQAGGSeOjavu/tEQ9IpZDxT+9rlHiV+33P76kDdgzRe+/txLuPI/SIkCUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLC4aUjAFDlHSUUpQu"
75
+ },
76
+ "_episode_num": 2451,
77
+ "use_sde": false,
78
+ "sde_sample_freq": -1,
79
+ "_current_progress_remaining": 0.0,
80
+ "ep_info_buffer": {
81
+ ":type:": "<class 'collections.deque'>",
82
+ ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUI9tGQiAq0CUhpRSlIwBbJRN6AOMAXSUR0CxTPOQdS2qdX2UKGgGaAloD0MIGf8+44qUq0CUhpRSlGgVTegDaBZHQLFRvgcLjPx1fZQoaAZoCWgPQwhQGf8+89qrQJSGlFKUaBVN6ANoFkdAsVaLirDIinV9lChoBmgJaA9DCF+4c2EkCqxAlIaUUpRoFU3oA2gWR0CxW1aJ66atdX2UKGgGaAloD0MIbSBdbFLUq0CUhpRSlGgVTegDaBZHQLFgIiKR+0B1fZQoaAZoCWgPQwhe29stuWGsQJSGlFKUaBVN6ANoFkdAsWTsNH6MznV9lChoBmgJaA9DCDF8REwpFqxAlIaUUpRoFU3oA2gWR0CxabLfHggpdX2UKGgGaAloD0MIyY/4Fdv1q0CUhpRSlGgVTegDaBZHQLFudybhFVl1fZQoaAZoCWgPQwgN38K6mf6rQJSGlFKUaBVN6ANoFkdAsXNKmk30gHV9lChoBmgJaA9DCIAnLVwmKKxAlIaUUpRoFU3oA2gWR0CxeCjv3JxOdX2UKGgGaAloD0MIyTzyBwNLrECUhpRSlGgVTegDaBZHQLF8+UGFBY51fZQoaAZoCWgPQwik+s4vSg2sQJSGlFKUaBVN6ANoFkdAsYHJVbRne3V9lChoBmgJaA9DCGahndPM9qtAlIaUUpRoFU3oA2gWR0CxhpuY6XBydX2UKGgGaAloD0MIMC3qkywGrECUhpRSlGgVTegDaBZHQLGLldKNAC51fZQoaAZoCWgPQwjcDaK16omrQJSGlFKUaBVN6ANoFkdAsZC0dhiLEXV9lChoBmgJaA9DCBJsXP/ONaxAlIaUUpRoFU3oA2gWR0CxlYW3vx6OdX2UKGgGaAloD0MImgmGcw0VrECUhpRSlGgVTegDaBZHQLGaU61LJ0Z1fZQoaAZoCWgPQwhIaqFkiuarQJSGlFKUaBVN6ANoFkdAsZ651p0wJ3V9lChoBmgJaA9DCIRkARPYW6xAlIaUUpRoFU3oA2gWR0CxowHMlkYodX2UKGgGaAloD0MIOjyE8XOCrECUhpRSlGgVTegDaBZHQLGnUvaDf3x1fZQoaAZoCWgPQwjRPlbwGz+sQJSGlFKUaBVN6ANoFkdAsawdntfG/HV9lChoBmgJaA9DCFXZd0WQBqxAlIaUUpRoFU3oA2gWR0CxsOoJu2qldX2UKGgGaAloD0MI8WJhiAxFrECUhpRSlGgVTegDaBZHQLG6Edfb9Ih1fZQoaAZoCWgPQwi69C9JbdCrQJSGlFKUaBVN6ANoFkdAsb7dR77bc3V9lChoBmgJaA9DCFqbxvaiKqxAlIaUUpRoFU3oA2gWR0Cxw6/l2eQNdX2UKGgGaAloD0MIgzRj0XRTrECUhpRSlGgVTegDaBZHQLHIn3Q2MsJ1fZQoaAZoCWgPQwgS3h6EcA6sQJSGlFKUaBVN6ANoFkdAsc2Cz3RG+nV9lChoBmgJaA9DCMhFtYjwPqxAlIaUUpRoFU3oA2gWR0Cx0mQPAfuDdX2UKGgGaAloD0MIk4/dBcphrECUhpRSlGgVTegDaBZHQLHXQ0fHPu51fZQoaAZoCWgPQwiNKsO40+WrQJSGlFKUaBVN6ANoFkdAsdwfJV81GnV9lChoBmgJaA9DCKiLFMqCMaxAlIaUUpRoFU3oA2gWR0Cx4PvhAGB4dX2UKGgGaAloD0MIiJy+nmfZq0CUhpRSlGgVTegDaBZHQLHl1GvwEyN1fZQoaAZoCWgPQwgkJT0MDQOsQJSGlFKUaBVN6ANoFkdAseqs/QjUu3V9lChoBmgJaA9DCHrCEg8wT6xAlIaUUpRoFU3oA2gWR0Cx74MmBvrGdX2UKGgGaAloD0MI71hsk1JzrECUhpRSlGgVTegDaBZHQLH0WkKu0Tl1fZQoaAZoCWgPQwiUopV7gV2sQJSGlFKUaBVN6ANoFkdAsfk6VGCqZXV9lChoBmgJaA9DCP5GO264vatAlIaUUpRoFU3oA2gWR0Cx/iy6g/TtdX2UKGgGaAloD0MIyy4YXNssrECUhpRSlGgVTegDaBZHQLIDFhCMPz51fZQoaAZoCWgPQwitFW2OgxqsQJSGlFKUaBVN6ANoFkdAsgft1s+FDnV9lChoBmgJaA9DCD4EVaNXkqxAlIaUUpRoFU3oA2gWR0CyDOpazNUwdX2UKGgGaAloD0MIMSO8PYg6rECUhpRSlGgVTegDaBZHQLIR0hddE9d1fZQoaAZoCWgPQwgQd/UqulGsQJSGlFKUaBVN6ANoFkdAsha53GGVRnV9lChoBmgJaA9DCFSp2QNdVaxAlIaUUpRoFU3oA2gWR0CyG6Mx9G7SdX2UKGgGaAloD0MIwLSoT6Luq0CUhpRSlGgVTegDaBZHQLIgjVtGd7R1fZQoaAZoCWgPQwizXaEPFgSQQJSGlFKUaBVNJAFoFkdAsiH98v24/nV9lChoBmgJaA9DCCQJwhUw9KtAlIaUUpRoFU3oA2gWR0CyJuq4+bExdX2UKGgGaAloD0MIA83n3E0MlUCUhpRSlGgVTXIBaBZHQLIovEPDpC91fZQoaAZoCWgPQwiTOCuiLmysQJSGlFKUaBVN6ANoFkdAsi2kuBczInV9lChoBmgJaA9DCCx+U1h5/atAlIaUUpRoFU3oA2gWR0CyNipfUnXvdX2UKGgGaAloD0MIQYAMHVtIrECUhpRSlGgVTegDaBZHQLI6d1zQu291fZQoaAZoCWgPQwiCNjl8SlOsQJSGlFKUaBVN6ANoFkdAsj9C/RE4N3V9lChoBmgJaA9DCHQkl/9gFqxAlIaUUpRoFU3oA2gWR0CyRCzsD4gzdX2UKGgGaAloD0MI5Ga4AS9vrECUhpRSlGgVTegDaBZHQLJJDCLdepp1fZQoaAZoCWgPQwhYN94dEW2sQJSGlFKUaBVN6ANoFkdAsk3gYgq3E3V9lChoBmgJaA9DCGHj+ncNe6xAlIaUUpRoFU3oA2gWR0CyUqfvBrN4dX2UKGgGaAloD0MIZyyazs5jrECUhpRSlGgVTegDaBZHQLJXe65oXbd1fZQoaAZoCWgPQwjYutQIDQmsQJSGlFKUaBVN6ANoFkdAslxkvAXVLHV9lChoBmgJaA9DCIFfI0kQaE9AlIaUUpRoFUsraBZHQLJcmv2GqPx1fZQoaAZoCWgPQwjl7J3RfjysQJSGlFKUaBVN6ANoFkdAsmF0yGi5/nV9lChoBmgJaA9DCMXkDTAbXaxAlIaUUpRoFU3oA2gWR0CyZkcABDG+dX2UKGgGaAloD0MIe0563/hdrECUhpRSlGgVTegDaBZHQLJrGcZtNzt1fZQoaAZoCWgPQwjdzVMdEnGsQJSGlFKUaBVN6ANoFkdAsm/tabF0gnV9lChoBmgJaA9DCKUxWkedPqxAlIaUUpRoFU3oA2gWR0CydL4qG1x9dX2UKGgGaAloD0MIGyycpPENrECUhpRSlGgVTegDaBZHQLJ5jTBZZB91fZQoaAZoCWgPQwh9s82NESWsQJSGlFKUaBVN6ANoFkdAsn5xNJvo/3V9lChoBmgJaA9DCFafq62IQqxAlIaUUpRoFU3oA2gWR0Cyg0QZXMhYdX2UKGgGaAloD0MI3pIcsJshrECUhpRSlGgVTegDaBZHQLKIC6AvtdB1fZQoaAZoCWgPQwiOWmH6RkesQJSGlFKUaBVN6ANoFkdAsozR9roGIXV9lChoBmgJaA9DCNUl4xjZ2KxAlIaUUpRoFU3oA2gWR0CykZ/r8iwCdX2UKGgGaAloD0MIwVWeQLhjrECUhpRSlGgVTegDaBZHQLKWeUiY9gZ1fZQoaAZoCWgPQwhws3ix0BSsQJSGlFKUaBVN6ANoFkdAsptSd4FA3XV9lChoBmgJaA9DCLK7QEnZ0qtAlIaUUpRoFU3oA2gWR0CyoDaNdZ7pdX2UKGgGaAloD0MIjCsujmpwrECUhpRSlGgVTegDaBZHQLKlGsenyd51fZQoaAZoCWgPQwgK20/GOBOsQJSGlFKUaBVN6ANoFkdAsqn7nKW9lHV9lChoBmgJaA9DCAq7KHqYAaxAlIaUUpRoFU3oA2gWR0CysxmZE2HddX2UKGgGaAloD0MIJm4VxBgXrECUhpRSlGgVTegDaBZHQLK38u89Oh11fZQoaAZoCWgPQwglH7sLVDCsQJSGlFKUaBVN6ANoFkdAsrzZo6CDmXV9lChoBmgJaA9DCNYe9kLpT6xAlIaUUpRoFU3oA2gWR0CywbnBDXvqdX2UKGgGaAloD0MIUd1c/JUMrECUhpRSlGgVTegDaBZHQLLGQxXGOuJ1fZQoaAZoCWgPQwi8H7dfDlSsQJSGlFKUaBVN6ANoFkdAssqQ3BHkLnV9lChoBmgJaA9DCF8KD5rVvKtAlIaUUpRoFU3oA2gWR0CyztnO4XoDdX2UKGgGaAloD0MINh/XhjpGrECUhpRSlGgVTegDaBZHQLLTnfseGPB1fZQoaAZoCWgPQwjekbHa3BysQJSGlFKUaBVN6ANoFkdAsthqgsbvPXV9lChoBmgJaA9DCGHdeHecJqxAlIaUUpRoFU3oA2gWR0Cy3TcCxNZedX2UKGgGaAloD0MImnlyTXn+q0CUhpRSlGgVTegDaBZHQLLiAlV94NZ1fZQoaAZoCWgPQwhXdsHgqiasQJSGlFKUaBVN6ANoFkdAsubLNt65XnV9lChoBmgJaA9DCIWVCioaUaxAlIaUUpRoFU3oA2gWR0Cy648DB/I9dX2UKGgGaAloD0MIP+PCgQBRrECUhpRSlGgVTegDaBZHQLLwVStvGZN1fZQoaAZoCWgPQwjjcOZXgz+sQJSGlFKUaBVN6ANoFkdAsvVszl90BHV9lChoBmgJaA9DCFzknq6mbaxAlIaUUpRoFU3oA2gWR0Cy+nsMRYigdX2UKGgGaAloD0MI5GVNLFDtoECUhpRSlGgVTT4CaBZHQLL9PF4cFQl1fZQoaAZoCWgPQwhjY15HJHCsQJSGlFKUaBVN6ANoFkdAswIIY/FBIHV9lChoBmgJaA9DCMuEX+p/TKxAlIaUUpRoFU3oA2gWR0CzBtFsxfv4dX2UKGgGaAloD0MIFcjsLDriq0CUhpRSlGgVTegDaBZHQLMLm8F6iTN1fZQoaAZoCWgPQwgwZktWVSisQJSGlFKUaBVN6ANoFkdAsxBlfx+a0HV9lChoBmgJaA9DCAdEiCsPV6xAlIaUUpRoFU3oA2gWR0CzFS5of0VadX2UKGgGaAloD0MIJJpAESsSrECUhpRSlGgVTegDaBZHQLMZ9Uo8ZDR1fZQoaAZoCWgPQwiNJayNOSOsQJSGlFKUaBVN6ANoFkdAsx7Tslb/wXV9lChoBmgJaA9DCETgSKDBaqxAlIaUUpRoFU3oA2gWR0CzI8Y7FKkEdX2UKGgGaAloD0MIFjJXBhVfrECUhpRSlGgVTegDaBZHQLMouzOoo/l1ZS4="
83
+ },
84
+ "ep_success_buffer": {
85
+ ":type:": "<class 'collections.deque'>",
86
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
87
+ },
88
+ "_n_updates": 990000,
89
+ "buffer_size": 1,
90
+ "batch_size": 256,
91
+ "learning_starts": 10000,
92
+ "tau": 0.005,
93
+ "gamma": 0.99,
94
+ "gradient_steps": 1,
95
+ "optimize_memory_usage": false,
96
+ "replay_buffer_class": {
97
+ ":type:": "<class 'abc.ABCMeta'>",
98
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
99
+ "__module__": "stable_baselines3.common.buffers",
100
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
101
+ "__init__": "<function ReplayBuffer.__init__ at 0x7f74c4d6d5e0>",
102
+ "add": "<function ReplayBuffer.add at 0x7f74c4d6d670>",
103
+ "sample": "<function ReplayBuffer.sample at 0x7f74c4d6d700>",
104
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7f74c4d6d790>",
105
+ "__abstractmethods__": "frozenset()",
106
+ "_abc_impl": "<_abc._abc_data object at 0x7f74c4d64f40>"
107
+ },
108
+ "replay_buffer_kwargs": {},
109
+ "train_freq": {
110
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
111
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
112
+ },
113
+ "use_sde_at_warmup": false,
114
+ "policy_delay": 2,
115
+ "target_noise_clip": 0.5,
116
+ "target_policy_noise": 0.2,
117
+ "actor_batch_norm_stats": [],
118
+ "critic_batch_norm_stats": [],
119
+ "actor_batch_norm_stats_target": [],
120
+ "critic_batch_norm_stats_target": []
121
+ }
td3-Hopper-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af3fee9e80439ccedf94ab10c8a8273ac08ec12101088a4ba304fd589a230b5a
3
+ size 3045753
td3-Hopper-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
td3-Hopper-v3/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
2
+ - Python: 3.9.12
3
+ - Stable-Baselines3: 1.8.0a6
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d67b3f1666534b5ee318f324db3d73a7a33608b954d25b6ad05ff6283293896
3
+ size 79753