Quentin Gallouédec commited on
Commit
dc11922
1 Parent(s): 54e90b2

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Pendulum-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: SAC
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: Pendulum-v1
16
+ type: Pendulum-v1
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -185.45 +/- 109.81
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **SAC** Agent playing **Pendulum-v1**
25
+ This is a trained model of a **SAC** agent playing **Pendulum-v1**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo sac --env Pendulum-v1 -orga qgallouedec -f logs/
47
+ python -m rl_zoo3.enjoy --algo sac --env Pendulum-v1 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo sac --env Pendulum-v1 -orga qgallouedec -f logs/
53
+ python -m rl_zoo3.enjoy --algo sac --env Pendulum-v1 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo sac --env Pendulum-v1 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo sac --env Pendulum-v1 -f logs/ -orga qgallouedec
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('learning_rate', 0.001),
66
+ ('n_timesteps', 20000),
67
+ ('policy', 'MlpPolicy'),
68
+ ('normalize', False)])
69
+ ```
args.yml ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - sac
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - Pendulum-v1
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 5
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - []
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - logs
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 1
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - -1
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 1470884819
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - ''
64
+ - - track
65
+ - false
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - null
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - yaml_file
81
+ - null
config.yml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - learning_rate
3
+ - 0.001
4
+ - - n_timesteps
5
+ - 20000
6
+ - - policy
7
+ - MlpPolicy
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dcf574cb4a5f6044389c7b83f78ec341a035463c32c4fcf79360fd35a77151ac
3
+ size 125311
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -185.4470566, "std_reward": 109.80606340107906, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T15:35:42.484150"}
sac-Pendulum-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d019c3964e93ebbe0fc6ce173c7395d349a9ea2bf09f9daee0de54c83f3e8def
3
+ size 3012413
sac-Pendulum-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0a6
sac-Pendulum-v1/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d07377ff815383de46ad03a853bb89899f7ac99c5a23853113622eb8752feb2b
3
+ size 545181
sac-Pendulum-v1/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44c42990d8157fc8584da34b3bd5a9efab6c2ef4f871786421d55983913a88f2
3
+ size 1086969
sac-Pendulum-v1/data ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.sac.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function SACPolicy.__init__ at 0x7fb4e0fd2ca0>",
8
+ "_build": "<function SACPolicy._build at 0x7fb4e0fd2d30>",
9
+ "_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7fb4e0fd2dc0>",
10
+ "reset_noise": "<function SACPolicy.reset_noise at 0x7fb4e0fd2e50>",
11
+ "make_actor": "<function SACPolicy.make_actor at 0x7fb4e0fd2ee0>",
12
+ "make_critic": "<function SACPolicy.make_critic at 0x7fb4e0fd2f70>",
13
+ "forward": "<function SACPolicy.forward at 0x7fb4e0fdb040>",
14
+ "_predict": "<function SACPolicy._predict at 0x7fb4e0fdb0d0>",
15
+ "set_training_mode": "<function SACPolicy.set_training_mode at 0x7fb4e0fdb160>",
16
+ "__abstractmethods__": "frozenset()",
17
+ "_abc_impl": "<_abc._abc_data object at 0x7fb4e0fda380>"
18
+ },
19
+ "verbose": 1,
20
+ "policy_kwargs": {
21
+ "use_sde": false
22
+ },
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAABBlGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 3
29
+ ],
30
+ "low": "[-1. -1. -8.]",
31
+ "high": "[1. 1. 8.]",
32
+ "bounded_below": "[ True True True]",
33
+ "bounded_above": "[ True True True]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.box.Box'>",
38
+ ":serialized:": "gAWVBAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAADAlGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAAECUaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
39
+ "dtype": "float32",
40
+ "_shape": [
41
+ 1
42
+ ],
43
+ "low": "[-2.]",
44
+ "high": "[2.]",
45
+ "bounded_below": "[ True]",
46
+ "bounded_above": "[ True]",
47
+ "_np_random": "RandomState(MT19937)"
48
+ },
49
+ "n_envs": 1,
50
+ "num_timesteps": 20000,
51
+ "_total_timesteps": 20000,
52
+ "_num_timesteps_at_start": 0,
53
+ "seed": 0,
54
+ "action_noise": null,
55
+ "start_time": 1671720071985985589,
56
+ "learning_rate": {
57
+ ":type:": "<class 'function'>",
58
+ ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
59
+ },
60
+ "tensorboard_log": null,
61
+ "lr_schedule": {
62
+ ":type:": "<class 'function'>",
63
+ ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
64
+ },
65
+ "_last_obs": null,
66
+ "_last_episode_starts": {
67
+ ":type:": "<class 'numpy.ndarray'>",
68
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
69
+ },
70
+ "_last_original_obs": {
71
+ ":type:": "<class 'numpy.ndarray'>",
72
+ ":serialized:": "gAWVgQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAOKjfz8VGVm94QpPvZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlC4="
73
+ },
74
+ "_episode_num": 100,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1CgkmQWBl8CUhpRSlIwBbJRLyIwBdJRHP/15sj3VTaV1fZQoaAZoCWgPQwgm5e5zrFWTwJSGlFKUaBVLyGgWR0ALOnAIppevdX2UKGgGaAloD0MIp88OuI79lcCUhpRSlGgVS8hoFkdAE83EQ5FPSHV9lChoBmgJaA9DCGkZqfcEmpfAlIaUUpRoFUvIaBZHQBpILG7z06J1fZQoaAZoCWgPQwhy+KQT2daXwJSGlFKUaBVLyGgWR0AgSBy0a6z3dX2UKGgGaAloD0MIQIUjSIVWl8CUhpRSlGgVS8hoFkdAI23S0BwMpnV9lChoBmgJaA9DCJM6AU1UQJPAlIaUUpRoFUvIaBZHQCbFRk3CKrJ1fZQoaAZoCWgPQwiAY8+eG/mRwJSGlFKUaBVLyGgWR0Ap1AUtZmqYdX2UKGgGaAloD0MIqOLGLRbFksCUhpRSlGgVS8hoFkdALMMfigkC3nV9lChoBmgJaA9DCN6QRgWOq5DAlIaUUpRoFUvIaBZHQC+q5kK/mDF1fZQoaAZoCWgPQwjYKOs3U2iNwJSGlFKUaBVLyGgWR0AxaoRZlnRLdX2UKGgGaAloD0MIorWizTEhhsCUhpRSlGgVS8hoFkdAMw2ys0YTCnV9lChoBmgJaA9DCM8xIHu9WwDAlIaUUpRoFUvIaBZHQDSwdLg4wRJ1fZQoaAZoCWgPQwiiQQqeQulvwJSGlFKUaBVLyGgWR0A2TBRhttQ9dX2UKGgGaAloD0MIeVkTC3yrX8CUhpRSlGgVS8hoFkdAOAuBxxT853V9lChoBmgJaA9DCPp6vma5zAXAlIaUUpRoFUvIaBZHQDmmvaDf3vh1fZQoaAZoCWgPQwjb+1QVWvh2wJSGlFKUaBVLyGgWR0A7TxNZeRgadX2UKGgGaAloD0MIX9IYrVMUk8CUhpRSlGgVS8hoFkdAPQrqlgtvoHV9lChoBmgJaA9DCCjWqfK9Y3bAlIaUUpRoFUvIaBZHQD6zKFIuoP11fZQoaAZoCWgPQwiEYcCSKz9gwJSGlFKUaBVLyGgWR0BALEY4yXUpdX2UKGgGaAloD0MIRGtFm2MebsCUhpRSlGgVS8hoFkdAQQIe1a4c3nV9lChoBmgJaA9DCOdu10vjUZPAlIaUUpRoFUvIaBZHQEHXijtXxON1fZQoaAZoCWgPQwiLwFjfgDd4wJSGlFKUaBVLyGgWR0BCr6IN3GGVdX2UKGgGaAloD0MIRiQKLeuiXMCUhpRSlGgVS8hoFkdAQ2xoRIz3y3V9lChoBmgJaA9DCNF6+DLR/WzAlIaUUpRoFUvIaBZHQEQ6q+8Gs3h1fZQoaAZoCWgPQwgmyAio8C5vwJSGlFKUaBVLyGgWR0BFAq5LAYYSdX2UKGgGaAloD0MIhJ1i1SA1XcCUhpRSlGgVS8hoFkdARcNJWeYlY3V9lChoBmgJaA9DCLZMhuP5DPS/lIaUUpRoFUvIaBZHQEaOVSn+AEt1fZQoaAZoCWgPQwhWYp6VtCL0v5SGlFKUaBVLyGgWR0BHWndfsu3+dX2UKGgGaAloD0MIHjS77q3SXcCUhpRSlGgVS8hoFkdASDABDG96C3V9lChoBmgJaA9DCFirdk1I6/m/lIaUUpRoFUvIaBZHQEkCEvCdjG11fZQoaAZoCWgPQwg6ysFsAuldwJSGlFKUaBVLyGgWR0BJyAS39aUzdX2UKGgGaAloD0MIsYf2sUIAcsCUhpRSlGgVS8hoFkdASpWyLQ5WBHV9lChoBmgJaA9DCGnEzD6PfF/AlIaUUpRoFUvIaBZHQEtnN0NjLB91fZQoaAZoCWgPQwhTBaOSOt1cwJSGlFKUaBVLyGgWR0BMLKxcE/0NdX2UKGgGaAloD0MIFqHYChoNYMCUhpRSlGgVS8hoFkdATQGh/RVp9XV9lChoBmgJaA9DCMeb/BbdF3fAlIaUUpRoFUvIaBZHQE4NYlpoK2N1fZQoaAZoCWgPQwhhp1g1CItfwJSGlFKUaBVLyGgWR0BPF/Yao/A1dX2UKGgGaAloD0MI0qsBSkM8X8CUhpRSlGgVS8hoFkdAUBAjQiRnvnV9lChoBmgJaA9DCCkEcokjSF3AlIaUUpRoFUvIaBZHQFCVQkHD7651fZQoaAZoCWgPQwhjl6jeGihewJSGlFKUaBVLyGgWR0BRGfGIbfgrdX2UKGgGaAloD0MILGUZ4limX8CUhpRSlGgVS8hoFkdAUZ6PEKmbb3V9lChoBmgJaA9DCDPgLCXLye6/lIaUUpRoFUvIaBZHQFIkLy+YdAB1fZQoaAZoCWgPQwguqdpugptfwJSGlFKUaBVLyGgWR0BSqcHbAUL2dX2UKGgGaAloD0MIk25L5IK6XsCUhpRSlGgVS8hoFkdAUy8AMlTm4nV9lChoBmgJaA9DCPxVgO823V3AlIaUUpRoFUvIaBZHQFO2KoybhFV1fZQoaAZoCWgPQwhd+pekMkXkv5SGlFKUaBVLyGgWR0BUOpRCQcPwdX2UKGgGaAloD0MIyJkmbD8wXsCUhpRSlGgVS8hoFkdAVL6YNRWLgnV9lChoBmgJaA9DCBmRKLSsX17AlIaUUpRoFUvIaBZHQFVB6Skj5bh1fZQoaAZoCWgPQwiCyY0ia40EwJSGlFKUaBVLyGgWR0BVxU0zj3mFdX2UKGgGaAloD0MI8nhafuDWXMCUhpRSlGgVS8hoFkdAVkmwdKdxyXV9lChoBmgJaA9DCHjy6bEtA+2/lIaUUpRoFUvIaBZHQFbO52yLQ5Z1fZQoaAZoCWgPQwifkQiNYLxewJSGlFKUaBVLyGgWR0BYtDDCP6sRdX2UKGgGaAloD0MIsaVHUz2gX8CUhpRSlGgVS8hoFkdAWqtCx/ustHV9lChoBmgJaA9DCATI0LGD1W3AlIaUUpRoFUvIaBZHQFylws5GSZB1fZQoaAZoCWgPQwjEk93M6AlewJSGlFKUaBVLyGgWR0BeoJKBd2PldX2UKGgGaAloD0MI06I+yR3NXsCUhpRSlGgVS8hoFkdAXwDbRF7UonV9lChoBmgJaA9DCJ86Vik9096/lIaUUpRoFUvIaBZHQF93gNgBtDV1fZQoaAZoCWgPQwgAGqVL/wJtwJSGlFKUaBVLyGgWR0Bf/Kpkwvg4dX2UKGgGaAloD0MIdv9YiA7zXsCUhpRSlGgVS8hoFkdAYEGEQGwA2nV9lChoBmgJaA9DCFQfSN45al7AlIaUUpRoFUvIaBZHQGCEmLk0aZR1fZQoaAZoCWgPQwhnnIaowp/iv5SGlFKUaBVLyGgWR0Bgxz5TIeYEdX2UKGgGaAloD0MIa0YGuYtibMCUhpRSlGgVS8hoFkdAYQneaa1CxHV9lChoBmgJaA9DCHlzuFZ76V7AlIaUUpRoFUvIaBZHQGFNBC+lCTl1fZQoaAZoCWgPQwhGeeblsG9fwJSGlFKUaBVLyGgWR0BhjzPhQ3xXdX2UKGgGaAloD0MI+Z/83TuLX8CUhpRSlGgVS8hoFkdAYdIbZvkzXXV9lChoBmgJaA9DCLkcr0D0AG7AlIaUUpRoFUvIaBZHQGIU5SNwR5F1fZQoaAZoCWgPQwhRa5p3nABewJSGlFKUaBVLyGgWR0BiV3J/5LyudX2UKGgGaAloD0MIFhdH5aZnbMCUhpRSlGgVS8hoFkdAYpnh2nsLOXV9lChoBmgJaA9DCF4robskBF7AlIaUUpRoFUvIaBZHQGLdD5Kvmo11fZQoaAZoCWgPQwjlZOJWQYJtwJSGlFKUaBVLyGgWR0BjH51mrbQDdX2UKGgGaAloD0MIMPZefFF+bMCUhpRSlGgVS8hoFkdAY2LZbILgGnV9lChoBmgJaA9DCOeNk8I8om3AlIaUUpRoFUvIaBZHQGOlbFjurp91fZQoaAZoCWgPQwjwFd16TRNdwJSGlFKUaBVLyGgWR0BkJ38fms/6dX2UKGgGaAloD0MIZoUi3c/bXsCUhpRSlGgVS8hoFkdAZR9BbfP5YnV9lChoBmgJaA9DCHx/g/bqU17AlIaUUpRoFUvIaBZHQGYXrzGxUvR1fZQoaAZoCWgPQwhr1hnfl49uwJSGlFKUaBVLyGgWR0BnEy4c3l0YdX2UKGgGaAloD0MIAwgfSrQTbcCUhpRSlGgVS8hoFkdAZ71S88La3HV9lChoBmgJaA9DCERPyqSGdmzAlIaUUpRoFUvIaBZHQGf4xsl9jPR1fZQoaAZoCWgPQwiCqPsA5OR1wJSGlFKUaBVLyGgWR0BoO2q1gH/tdX2UKGgGaAloD0MIfa1LjdCP+L+UhpRSlGgVS8hoFkdAaH3jZtelbnV9lChoBmgJaA9DCCBGCI82v1/AlIaUUpRoFUvIaBZHQGjAgnUlRgt1fZQoaAZoCWgPQwhXzAhvD0Lzv5SGlFKUaBVLyGgWR0BpAvboKUmldX2UKGgGaAloD0MIPnsuUxNVbMCUhpRSlGgVS8hoFkdAaUaZc9nscHV9lChoBmgJaA9DCOfIyi+DZF/AlIaUUpRoFUvIaBZHQGmI5wn6VMV1fZQoaAZoCWgPQwjd6jnpfcddwJSGlFKUaBVLyGgWR0Bpy7nvDxb0dX2UKGgGaAloD0MIEHf1KjKiXsCUhpRSlGgVS8hoFkdAag6vtdAxBXV9lChoBmgJaA9DCNfep6pQqWDAlIaUUpRoFUvIaBZHQGpR0Fjd56d1fZQoaAZoCWgPQwjYgAhx5eFtwJSGlFKUaBVLyGgWR0Bqk829+PRzdX2UKGgGaAloD0MIkWCqmTUmbcCUhpRSlGgVS8hoFkdAatYsFt8/lnV9lChoBmgJaA9DCC+ob5nTgl/AlIaUUpRoFUvIaBZHQGseknLJSzh1fZQoaAZoCWgPQwh/bJIf8bZewJSGlFKUaBVLyGgWR0BrYa1TisGQdX2UKGgGaAloD0MI9yAE5EvMX8CUhpRSlGgVS8hoFkdAa6UUfPomonV9lChoBmgJaA9DCK7X9KCg6F3AlIaUUpRoFUvIaBZHQGvoPrfLs8h1fZQoaAZoCWgPQwgAN4sXi/hswJSGlFKUaBVLyGgWR0BsftL+PzWgdX2UKGgGaAloD0MINIKN698qYMCUhpRSlGgVS8hoFkdAbXsPuogmq3V9lChoBmgJaA9DCMk7hzJUhfa/lIaUUpRoFUvIaBZHQG53rlNlAeJ1fZQoaAZoCWgPQwhN2H4yxt5rwJSGlFKUaBVLyGgWR0Bvd4hwEQoTdX2UKGgGaAloD0MIC0Pk9PV877+UhpRSlGgVS8hoFkdAcAbj7Q9idHV9lChoBmgJaA9DCFw+kpIeXl3AlIaUUpRoFUvIaBZHQHAkziwSrYJ1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 19900,
87
+ "buffer_size": 1,
88
+ "batch_size": 256,
89
+ "learning_starts": 100,
90
+ "tau": 0.005,
91
+ "gamma": 0.99,
92
+ "gradient_steps": 1,
93
+ "optimize_memory_usage": false,
94
+ "replay_buffer_class": {
95
+ ":type:": "<class 'abc.ABCMeta'>",
96
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
97
+ "__module__": "stable_baselines3.common.buffers",
98
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
99
+ "__init__": "<function ReplayBuffer.__init__ at 0x7fb4e102a430>",
100
+ "add": "<function ReplayBuffer.add at 0x7fb4e102a4c0>",
101
+ "sample": "<function ReplayBuffer.sample at 0x7fb4e102a550>",
102
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7fb4e102a5e0>",
103
+ "__abstractmethods__": "frozenset()",
104
+ "_abc_impl": "<_abc._abc_data object at 0x7fb4e14ca480>"
105
+ },
106
+ "replay_buffer_kwargs": {},
107
+ "train_freq": {
108
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
109
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
110
+ },
111
+ "use_sde_at_warmup": false,
112
+ "target_entropy": -1.0,
113
+ "ent_coef": "auto",
114
+ "target_update_interval": 1,
115
+ "batch_norm_stats": [],
116
+ "batch_norm_stats_target": []
117
+ }
sac-Pendulum-v1/ent_coef_optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c2931e7712f5bae6b2e8ceeb5ed63908c45b68d7516fdaa2e03df0d9013bb5b
3
+ size 1507
sac-Pendulum-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4fa2599eee1801f72e447d4efa87aa7900fa4af9404ac83de7bac51beb8dd002
3
+ size 1357573
sac-Pendulum-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1d603b1bb9a6d65c41b351266af381a27fdec8e42c6b889e8cd4c6ae10fc695
3
+ size 747
sac-Pendulum-v1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
2
+ - Python: 3.9.12
3
+ - Stable-Baselines3: 1.8.0a6
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1bf4752142f7eee93c4b4f3d0ea423cffdc53d45bcd97e5d8da70a78b376a414
3
+ size 2892