Quentin Gallouédec
Initial commit
8c5ca66
raw
history blame
20 kB
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=",
"__module__": "stable_baselines3.sac.policies",
"__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
"__init__": "<function SACPolicy.__init__ at 0x7f9e00a92ca0>",
"_build": "<function SACPolicy._build at 0x7f9e00a92d30>",
"_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7f9e00a92dc0>",
"reset_noise": "<function SACPolicy.reset_noise at 0x7f9e00a92e50>",
"make_actor": "<function SACPolicy.make_actor at 0x7f9e00a92ee0>",
"make_critic": "<function SACPolicy.make_critic at 0x7f9e00a92f70>",
"forward": "<function SACPolicy.forward at 0x7f9e00a9a040>",
"_predict": "<function SACPolicy._predict at 0x7f9e00a9a0d0>",
"set_training_mode": "<function SACPolicy.set_training_mode at 0x7f9e00a9a160>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7f9e00a98ac0>"
},
"verbose": 1,
"policy_kwargs": {
"net_arch": [
400,
300
],
"use_sde": false
},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVDgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAAAAIC/AACAv5RoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAAAAAIA/AACAP5RoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgtjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
"dtype": "float32",
"_shape": [
2
],
"low": "[-1. -1.]",
"high": "[1. 1.]",
"bounded_below": "[ True True]",
"bounded_above": "[ True True]",
"_np_random": "RandomState(MT19937)"
},
"n_envs": 1,
"num_timesteps": 500000,
"_total_timesteps": 500000,
"_num_timesteps_at_start": 0,
"seed": 0,
"action_noise": null,
"start_time": 1672122170770253710,
"learning_rate": {
":type:": "<class 'function'>",
":serialized:": "gAWVWwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTSIBQwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAdybF96b28zlIwIX19uYW1lX1+UjA1ybF96b28zLnV0aWxzlIwIX19maWxlX1+UjDQvaG9tZS9xZ2FsbG91ZWRlYy9ybC1iYXNlbGluZXMzLXpvby9ybF96b28zL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKIwScHJvZ3Jlc3NfcmVtYWluaW5nlIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgtdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAmMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9H668QI2OyhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"tensorboard_log": "runs/LunarLanderContinuous-v2__sac__284529672__1672122168/LunarLanderContinuous-v2",
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVWwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTSIBQwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAdybF96b28zlIwIX19uYW1lX1+UjA1ybF96b28zLnV0aWxzlIwIX19maWxlX1+UjDQvaG9tZS9xZ2FsbG91ZWRlYy9ybC1iYXNlbGluZXMzLXpvby9ybF96b28zL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKIwScHJvZ3Jlc3NfcmVtYWluaW5nlIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgtdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAmMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9H668QI2OyhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": null,
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
},
"_last_original_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAEr+kz6Fa5s8njoXvXcC9r0Y9bU9VgAwvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
},
"_episode_num": 1817,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": 0.0,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVMBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHv8FgsCKcECUhpRSlIwBbJRLuIwBdJRHQK1aNIczZYh1fZQoaAZoCWgPQwhjDRe5p7JsQJSGlFKUaBVLxGgWR0CtXTn5JsfrdX2UKGgGaAloD0MIJegv9Ig2aECUhpRSlGgVS9hoFkdArWCVJ8OTaHV9lChoBmgJaA9DCPLrh9gg8HBAlIaUUpRoFUvMaBZHQK1jveC04R51fZQoaAZoCWgPQwiaz7nbdW9uQJSGlFKUaBVL52gWR0CtZ10o8ZDRdX2UKGgGaAloD0MIbt3NU521cECUhpRSlGgVS8hoFkdArWp1FH8TBnV9lChoBmgJaA9DCKjhW1h3PXFAlIaUUpRoFUvDaBZHQK1tdOGCZnd1fZQoaAZoCWgPQwiK5ZZWQ9xsQJSGlFKUaBVNJAFoFkdArXIY/X5FgHV9lChoBmgJaA9DCBxEa0UbzHJAlIaUUpRoFUvpaBZHQK11vNt65Xl1fZQoaAZoCWgPQwj0+pP4XOlxQJSGlFKUaBVLzmgWR0CtePJiZv1ldX2UKGgGaAloD0MI/YUeMfpqbkCUhpRSlGgVTSYCaBZHQK2BzcZccEN1fZQoaAZoCWgPQwh80/TZAWxvQJSGlFKUaBVLymgWR0CthO0WdmQKdX2UKGgGaAloD0MI2CyXjQ4xc0CUhpRSlGgVS/9oFkdArYjnX05EMXV9lChoBmgJaA9DCBGmKJdGfnJAlIaUUpRoFU0IAWgWR0CtjRK/ub7TdX2UKGgGaAloD0MI8Uv9vKl7cUCUhpRSlGgVS+toFkdArZC7ihnJ1nV9lChoBmgJaA9DCHx+GCE89W9AlIaUUpRoFUvGaBZHQK2TxXarWAh1fZQoaAZoCWgPQwhO7+L9uFxtQJSGlFKUaBVLs2gWR0CtloWd3B55dX2UKGgGaAloD0MIE2IuqVr9b0CUhpRSlGgVS9xoFkdArZnt0ihWYHV9lChoBmgJaA9DCLnfoShQKG5AlIaUUpRoFUu+aBZHQK2c2TUy57R1fZQoaAZoCWgPQwirlQm/1G9wQJSGlFKUaBVLqmgWR0Ctn3lDWsijdX2UKGgGaAloD0MIaeGyCptEcUCUhpRSlGgVS6doFkdAraIL4k/r0XV9lChoBmgJaA9DCEgZcQFoHW5AlIaUUpRoFUu6aBZHQK2k5DfFaSt1fZQoaAZoCWgPQwgmjGZlO6txQJSGlFKUaBVL22gWR0CtqEb+cYqHdX2UKGgGaAloD0MItp+M8eG+bUCUhpRSlGgVS6toFkdArarsaVD8cnV9lChoBmgJaA9DCIviVdY2mW5AlIaUUpRoFUu8aBZHQK2t09ugpSd1fZQoaAZoCWgPQwgt6pPcYbJuQJSGlFKUaBVLvmgWR0CtsMXenAIqdX2UKGgGaAloD0MIBvLs8i1ecECUhpRSlGgVS+NoFkdArbRNYfW+XnV9lChoBmgJaA9DCPT8aaO6IW5AlIaUUpRoFUu0aBZHQK23FoMa0hN1fZQoaAZoCWgPQwiDT3PyItZvQJSGlFKUaBVL2GgWR0CtunTs6aLGdX2UKGgGaAloD0MIp1zhXS6pb0CUhpRSlGgVTQMBaBZHQK2+iJvYODt1fZQoaAZoCWgPQwh47j1c8oZyQJSGlFKUaBVL+WgWR0CtwmjNyHVPdX2UKGgGaAloD0MIpRZKJicIcUCUhpRSlGgVS8xoFkdArcWPRG+bmXV9lChoBmgJaA9DCAZHyavzQmlAlIaUUpRoFUvuaBZHQK3JSkhzNll1fZQoaAZoCWgPQwhLPnYXKIpxQJSGlFKUaBVL/GgWR0CtzTk690zTdX2UKGgGaAloD0MIZHRAEvbcbkCUhpRSlGgVS8toFkdArdBhKg7HQ3V9lChoBmgJaA9DCK2iPzTzonJAlIaUUpRoFU0XAWgWR0Ct1L/mT1TSdX2UKGgGaAloD0MIgXhdv2DCbkCUhpRSlGgVS8RoFkdArdfDgn+hoXV9lChoBmgJaA9DCDHO34SCsXFAlIaUUpRoFU0YAWgWR0Ct3CN1p0wKdX2UKGgGaAloD0MIY30Dk1s9cUCUhpRSlGgVTSsBaBZHQK3g3r6+FlF1fZQoaAZoCWgPQwhan3JMFghyQJSGlFKUaBVNDAFoFkdAreUO1WsBAHV9lChoBmgJaA9DCPXzpiKVFnBAlIaUUpRoFUvJaBZHQK3oKQT238Z1fZQoaAZoCWgPQwiT/8nfvQ8/QJSGlFKUaBVN6ANoFkdArfjdwT/Q0HV9lChoBmgJaA9DCCDPLt+6onBAlIaUUpRoFU0NAWgWR0Ct/RyYgJTmdX2UKGgGaAloD0MIRnnm5bBrb0CUhpRSlGgVTSIBaBZHQK4Btq6e5Fx1fZQoaAZoCWgPQwgbDeAtkNBoQJSGlFKUaBVLyGgWR0CuBNQdsBQvdX2UKGgGaAloD0MIsTbGTvgVZ0CUhpRSlGgVTXABaBZHQK4KsD5CWu51fZQoaAZoCWgPQwhQVgxXB/xrQJSGlFKUaBVL92gWR0CuDojFAE+xdX2UKGgGaAloD0MIms5OBke/bkCUhpRSlGgVS61oFkdArhEykhzNlnV9lChoBmgJaA9DCHCWkuUk6nBAlIaUUpRoFUveaBZHQK4UprleWv91fZQoaAZoCWgPQwiOdtzwOyJxQJSGlFKUaBVL82gWR0CuGG1HnU2DdX2UKGgGaAloD0MIdbFppRALb0CUhpRSlGgVTQUBaBZHQK4ciQZGax51fZQoaAZoCWgPQwirWWd832hvQJSGlFKUaBVLvWgWR0CuH3W+XZ5BdX2UKGgGaAloD0MIK6T8pNrRbkCUhpRSlGgVS9toFkdAriLaDK5kLHV9lChoBmgJaA9DCBTq6SNwCnFAlIaUUpRoFUvZaBZHQK4mN0IToMd1fZQoaAZoCWgPQwg+P4wQnohwQJSGlFKUaBVLs2gWR0CuKPz7l7tzdX2UKGgGaAloD0MITIv6JHc7bkCUhpRSlGgVS8ZoFkdAriwSAUcn3XV9lChoBmgJaA9DCJVjsrj/13BAlIaUUpRoFUvBaBZHQK4vEH3UQTV1fZQoaAZoCWgPQwhBDHTtC1JzQJSGlFKUaBVL5GgWR0CuMqfdqL0jdX2UKGgGaAloD0MIGcv0S8SCb0CUhpRSlGgVS7VoFkdArjVxppN9IHV9lChoBmgJaA9DCH7GhQMhuGxAlIaUUpRoFUvMaBZHQK44m0qpcX51fZQoaAZoCWgPQwgvNNdppM1uQJSGlFKUaBVLqWgWR0CuOzen62v0dX2UKGgGaAloD0MI5L7VOrEfcECUhpRSlGgVS61oFkdArj3kI/qxDHV9lChoBmgJaA9DCJcaoZ+pVXBAlIaUUpRoFUu4aBZHQK5Au+RoysV1fZQoaAZoCWgPQwhfC3pvDL5yQJSGlFKUaBVNJQFoFkdArkVZsqJ/G3V9lChoBmgJaA9DCA6D+SvkrGlAlIaUUpRoFUvMaBZHQK5IhIuoP091fZQoaAZoCWgPQwj7OnDOSM5wQJSGlFKUaBVL8mgWR0CuTE7cXWOIdX2UKGgGaAloD0MI+IiYEskicUCUhpRSlGgVS+RoFkdArk/ka6z3RHV9lChoBmgJaA9DCKgAGM+gfm9AlIaUUpRoFUu2aBZHQK5Svtix3V11fZQoaAZoCWgPQwjwGYnQyDxyQJSGlFKUaBVL22gWR0CuViyH2ys0dX2UKGgGaAloD0MIVWr2QGs7c0CUhpRSlGgVS/loFkdArloZpztCzHV9lChoBmgJaA9DCAq9/iS+fm1AlIaUUpRoFUvEaBZHQK5dK+mm+Cd1fZQoaAZoCWgPQwjnw7ME2a1xQJSGlFKUaBVL4WgWR0CuYLX0Gu9wdX2UKGgGaAloD0MIB0SIK2dackCUhpRSlGgVS/VoFkdArmSSM1jy4HV9lChoBmgJaA9DCAt8RbdeiHFAlIaUUpRoFUvwaBZHQK5oXswco6V1fZQoaAZoCWgPQwhKe4MvTL9tQJSGlFKUaBVLuGgWR0Cuazi2c8T0dX2UKGgGaAloD0MIzlSIRyL4cECUhpRSlGgVS8loFkdArm5Tb8FY+3V9lChoBmgJaA9DCNIYraNqKnJAlIaUUpRoFU0UAWgWR0Cucp/W+XZ5dX2UKGgGaAloD0MISiU8oVeCcUCUhpRSlGgVTQcBaBZHQK52s71ZkkN1fZQoaAZoCWgPQwj4iQPo94kwQJSGlFKUaBVL02gWR0Cuee8ox59mdX2UKGgGaAloD0MITTCca5jfakCUhpRSlGgVTRoBaBZHQK5+UCXhOxl1fZQoaAZoCWgPQwgAxciSuaZvQJSGlFKUaBVLvGgWR0CugTPvjOs1dX2UKGgGaAloD0MINrHAV3TZcUCUhpRSlGgVS9FoFkdAroRvX5FgD3V9lChoBmgJaA9DCHAlOzbCAnJAlIaUUpRoFUv1aBZHQK6IPQj2SMd1fZQoaAZoCWgPQwiTbkvkwlFxQJSGlFKUaBVL8WgWR0Cui/2wNb1RdX2UKGgGaAloD0MIaverAF8ScECUhpRSlGgVS8RoFkdAro8KtknTiXV9lChoBmgJaA9DCMucLosJCm5AlIaUUpRoFUvDaBZHQK6SCgWac7R1fZQoaAZoCWgPQwjlettMBexwQJSGlFKUaBVL2GgWR0CulWF3Qla9dX2UKGgGaAloD0MI+N7foL3ga0CUhpRSlGgVTVYBaBZHQK6a550KZ2J1fZQoaAZoCWgPQwgrieyD7GtxQJSGlFKUaBVL72gWR0Cunp3v6TGHdX2UKGgGaAloD0MIEqRS7Gj9bECUhpRSlGgVS+5oFkdArqJNkFwDNnV9lChoBmgJaA9DCGaC4VyD+3FAlIaUUpRoFUu+aBZHQK6lQqiGnGd1fZQoaAZoCWgPQwiALa9cLx5wQJSGlFKUaBVLqGgWR0Cup9qqwQlKdX2UKGgGaAloD0MIwavlzkzzcECUhpRSlGgVS7VoFkdArqqjVc2R73V9lChoBmgJaA9DCFqD91W5Km9AlIaUUpRoFUu3aBZHQK6tb/vv0Ad1fZQoaAZoCWgPQwgOar+1k05xQJSGlFKUaBVLx2gWR0CusH9Wp6yCdX2UKGgGaAloD0MIo81xbpOEaECUhpRSlGgVS+doFkdArrQdi2DxsnV9lChoBmgJaA9DCHv2XKZmAXJAlIaUUpRoFUuoaBZHQK62s1PWQOp1fZQoaAZoCWgPQwiwOnKkc4hyQJSGlFKUaBVNDQFoFkdArrrs+TvAoHV9lChoBmgJaA9DCNBCAkZXXXFAlIaUUpRoFUu8aBZHQK690dRR/Ex1fZQoaAZoCWgPQwgV5GcjV0FxQJSGlFKUaBVLzmgWR0CuwPtWEK3NdWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 490000,
"buffer_size": 1,
"batch_size": 256,
"learning_starts": 10000,
"tau": 0.01,
"gamma": 0.99,
"gradient_steps": 1,
"optimize_memory_usage": false,
"replay_buffer_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
"__module__": "stable_baselines3.common.buffers",
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
"__init__": "<function ReplayBuffer.__init__ at 0x7f9e00aea430>",
"add": "<function ReplayBuffer.add at 0x7f9e00aea4c0>",
"sample": "<function ReplayBuffer.sample at 0x7f9e00aea550>",
"_get_samples": "<function ReplayBuffer._get_samples at 0x7f9e00aea5e0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7f9e00ae1800>"
},
"replay_buffer_kwargs": {},
"train_freq": {
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
},
"use_sde_at_warmup": false,
"target_entropy": -2.0,
"ent_coef": "auto",
"target_update_interval": 1,
"batch_norm_stats": [],
"batch_norm_stats_target": []
}