|
{ |
|
"policy_class": { |
|
":type:": "<class 'abc.ABCMeta'>", |
|
":serialized:": "gAWVSAAAAAAAAACMJXNiM19jb250cmliLmNvbW1vbi5yZWN1cnJlbnQucG9saWNpZXOUjBpSZWN1cnJlbnRBY3RvckNyaXRpY1BvbGljeZSTlC4=", |
|
"__module__": "sb3_contrib.common.recurrent.policies", |
|
"__doc__": "\n Recurrent policy class for actor-critic algorithms (has both policy and value prediction).\n To be used with A2C, PPO and the likes.\n It assumes that both the actor and the critic LSTM\n have the same architecture.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param lstm_hidden_size: Number of hidden units for each LSTM layer.\n :param n_lstm_layers: Number of LSTM layers.\n :param shared_lstm: Whether the LSTM is shared between the actor and the critic\n (in that case, only the actor gradient is used)\n By default, the actor and the critic have two separate LSTM.\n :param enable_critic_lstm: Use a seperate LSTM for the critic.\n :param lstm_kwargs: Additional keyword arguments to pass the the LSTM\n constructor.\n ", |
|
"__init__": "<function RecurrentActorCriticPolicy.__init__ at 0x7fa2113be550>", |
|
"_build_mlp_extractor": "<function RecurrentActorCriticPolicy._build_mlp_extractor at 0x7fa2113be5e0>", |
|
"_process_sequence": "<staticmethod object at 0x7fa2113b8550>", |
|
"forward": "<function RecurrentActorCriticPolicy.forward at 0x7fa211349310>", |
|
"get_distribution": "<function RecurrentActorCriticPolicy.get_distribution at 0x7fa2113493a0>", |
|
"predict_values": "<function RecurrentActorCriticPolicy.predict_values at 0x7fa211349430>", |
|
"evaluate_actions": "<function RecurrentActorCriticPolicy.evaluate_actions at 0x7fa2113494c0>", |
|
"_predict": "<function RecurrentActorCriticPolicy._predict at 0x7fa211349550>", |
|
"predict": "<function RecurrentActorCriticPolicy.predict at 0x7fa2113495e0>", |
|
"__abstractmethods__": "frozenset()", |
|
"_abc_impl": "<_abc._abc_data object at 0x7fa211344c80>" |
|
}, |
|
"verbose": 1, |
|
"policy_kwargs": { |
|
":type:": "<class 'dict'>", |
|
":serialized:": "gAWVmAAAAAAAAAB9lCiMCm9ydGhvX2luaXSUiYwNYWN0aXZhdGlvbl9mbpSMG3RvcmNoLm5uLm1vZHVsZXMuYWN0aXZhdGlvbpSMBFJlTFWUk5SMEGxzdG1faGlkZGVuX3NpemWUS0CMEmVuYWJsZV9jcml0aWNfbHN0bZSIjAhuZXRfYXJjaJR9lCiMAnBplF2US0BhjAJ2ZpRdlEtAYXV1Lg==", |
|
"ortho_init": false, |
|
"activation_fn": "<class 'torch.nn.modules.activation.ReLU'>", |
|
"lstm_hidden_size": 64, |
|
"enable_critic_lstm": true, |
|
"net_arch": { |
|
"pi": [ |
|
64 |
|
], |
|
"vf": [ |
|
64 |
|
] |
|
} |
|
}, |
|
"observation_space": { |
|
":type:": "<class 'gym.spaces.box.Box'>", |
|
":serialized:": "gAWVIQwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAACamZnA//9//1B31r7//3//lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAADn8F/fGaEesjVlygyh0LGRQ2km4AZpTme4J644ZxGO/K66xMHIUm71R2+96wDywIOt2YXolVkpbF3H0B9s+8VR5ERjD6raeBGeryhatl2NQLN7ulLp3BrisjbqnPx6fZg22Z1aAOiqQLCMIRSsDMBoLVT6N/T+jQg4eQpHm3ecS0hKf5VsdcF/9xQ/4/NyrCHERdXvTPgN2XmkMi5kRTuAmJ7SdZrs3+VOAhcevlvKQPP8ncYAgGZPzCpMdVKuBzxfkjMlREILaszoNCfA86LrLkrec3iSmVsfZa46Zm0pttuWMrEz+NuuATnISQy8MShYLDCRYd98hYI+vY9o13rhjcNjqoFB2czfeoS+x/tiGTprKTN7of3daZofSuQlseV6SasW/hM6w57z57Jeccf4pMRXZQunsPCjv8+dlib5/MeaUFWwjgQGhiTNm6QmUxjGK2g832GHoP46W2/VttkfVZIbaD7yESmBE2HpVrNuEpfxQPFY0V8LgLgO4U24BXy+9vlkZkEJrmR+m050ULeBB2RBv0GFbWgNstmRyUJNc+WaiGS88mhdj+ZaBdCBrrTR4E5QHMJKj+FSERd/+nhuvf84Hp73eGs4yx1dPGB6VRqGPygETNKyreyTQ5T5jXQMQ5qAubVpYKb7FeuzLmciPTthXYDypkEfMSxMpBq/g72hF7mspLuybFbwvmTgbhoCt7rA2+JKKY07/IxgpnA9veNgHzRSdG+/frCic4jElISxKQpDZnZodK21lKDMUt9Tf6FNWko10Qbg5ldAdhJ47uzfTqwBLaovh6ZT0ntZa+Br7j530j7eUE8W6eTRPLqcmfDy0onpyR5TKnt/R/OOFpcJUXkACXCSHuFaJ32AirKSoljhVNonFLFA+7Fl/1+r6rYvbRFpjG8EdpVnp2pp/pblSkaQw619M5l8zEt67YGXijh/BJofVbFnsdeawYa5/wNE8f32zkO3RRKYFBIpGt1gj4IVsPJO/mF2yZosRsdlSK+kTzA6SUkWArEdbPE5bM9R0s/hO8tcLeehMUpihDDZmq/Xtd8fzoKIEh8untWLqcaUGBOXj2vGGobFsPHK0dOW3C+gcB7MWY+M2CXHOw6Y+xyman+kzYdQ9o20EG1JZiSN4I8irKvglXjyTj6/kBwYq+oHKW7HcmvfntxUDjufF4nVZe4cWqhsg0xUVcfMt5cbjSIcTY7wGAw/KPqcub9k7XaJt0X5kGJ/YX2iPO1/ZwrickqV2Bp0DpNZnjUsXf6Qy4ftFxDgiPCx0CN14vKJII7jbr1mrEbGBfdqhOPI7vN/bz4sWkKbmqsnthUoH6OvVB0Jw8RYZCYW9pPswf+Jnr4NsH1rcgOy+jZQ6i7yDc0VorhNeADQE0wYNtv8Lto86uBQVMWWcIPlvAJ1IToreWjt56M/8hSqQfop3ggH1HsJ6OWAZm2dqhTLbiDXKK/stJ233TKlvtDDyldjP7sHvVFpEEU3dMlW5YDCyiOpHzq4gN2NLHTmsRpg5C2bMuFJsAR6sLUk4Hl5oLL2ygqA44sDnbqP5t20cr3/tcOIBuKEKuaaxxBDq4DC7gTTsavfirm1Yc/dzcLYTpVVMh+XjPPWlqjczcVx+KLSd7tHJhlrBHTkIvIqcfhQDbKzx+cgLgPKsX2kkcOri409UQV6e0p0/3YQVof/CYmzbaTrdUTKtJNh2439gIaq2d4bLf9qw2IkRRd+0qDP99StS9+7RRO4sLs+bmwYQr8AlJQDyH/qhpoJvMZlzzdp2atUVN7PIj60FjaJoqNGDqH+KlVMFo9bbhZ+H/z6pWohh2JLg7KOBSKNK54B6FtMsX1TttmYtn6Gr7P4YnwmpNcfWiT+ZVsqdtKEJTSkpRuRSiaI8NqGK/tZuZwlfRSpifI8W6n0h8Fr5BvcwxWWBQsIUmt5oesJxaMEvjrMVaxE9wv4r6/7HcYUPL8gupX6EChUpckaPNKui2mmAu5FH/IOTZU6jcsTjs8Pgus2CbLMsz4nGULpTstps1beqWVri/L3Id9BK6ORqemMCWF7YdKQuSIbjn04iIbaD0k3Cqaq61kzgQT//MnJBO+GEtH6N9G7OVNs4h8LTMxV/R/f1f0RnrgOg+SO8tTligjFSGXae5FnhnDDpdw8koC/TV3Fq/wfQ0hobz8vgcRHxTjL7nsnBqFlzd1ZD5ov+UrqSi3nIbIbfOrMq9d4HtqO5hZbG3dAdIitJpK61Gr2XX3gX7hPtPJQuzCODIuXAjHEGklNheAYsVx7ezIRnkOU+j+Vgyqaq1KxUpbJCmTx/KdUL5fl7soyIRxlR6S+p8VQmWw/L4klz+9KWNoUSdxJzi44ib+cJ+K2dePFpaM+9/hDAOmFj/OOhVeSPhgQn/BP+9QAf3E0Bo6rdSPYKqaHagREC1f8UqCrAN8TXlVQxAL47VN0gn4nwXed22dDMcVqyaGLV3juhIr1MSJsBRg60JXfdG9KgAhUizl5hboIrcQGFAeg8OXuSNLtc8175eXWy82qKUx38sfdrx6mLRplFlrejV4Oxd71J90bcXVItfgzlc7sy00X0iK4Ink0CWQWkc6aGQwqiAtyP4HVRKN8dJZwIP+y73BsLt7ZQdjMaOMGtx9aGmcczhpSsKEdPBrNiBY53+5Cq7egn9jmWKGNwp6HGXIKfzUlnr3OVpvW/ScFzgNfuA6ralFUHDujopenFJexxjrdaTLy+deQqShUWxoZOtOETzWOFCyVk099ahLK8DvVsJUSF9//UPCkvIMrKZtOavCYpLUnbD8Fqp/GHq8TVDNxEeX+n+pr0TwB9KTfjXK7xQrjabNzfacLpm1VnUhrdYwQIyObgjZU+yULxG4NJVmCzdDv+IMi2khXaJ4WNZTtluP1SqwM78/muGyT6dAlfyjzPw+ySZBiPaP2z4QU6BUPbxi+vBg4wdBWpIAZ1uPVtqRYQYJguQhFePZl9n/fr2YZQKhCJ7PKzBKJBmZcaRIxBQKd+oAjM10ZVHxoVCxgXCtklrCCtJBNMvnFTu7G80v0mp4IHdbrjlnXVQHbUBDwq3uldWHX/WeZMml+PQD5SK3sL8+ulNeLBBdBRXW7Sid3Tjw0iVYf+9rsTHHU0tpMYrgd2I53JTV8TO5PidZO1TPGXBV0LLBYvB6lk1IfD4hqsUHAK87FirVeWJVFQ34tiPh3vQZke3Qs21f/5Zm5vduNE1uG5DF1FrWW0iGOXVhZrz7f46C7FCOE/NrGAWU5Un/K/aiTWGZgox6l+K9uVQ4Lne7kITXIddOPtsE8eMDql4a1hIj/go4nSxnyEIoVxQG10B7tFXH7zr3WH/iUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RLCHWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", |
|
"dtype": "float32", |
|
"_shape": [ |
|
4 |
|
], |
|
"low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", |
|
"high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", |
|
"bounded_below": "[ True True True True]", |
|
"bounded_above": "[ True True True True]", |
|
"_np_random": "RandomState(MT19937)" |
|
}, |
|
"action_space": { |
|
":type:": "<class 'gym.spaces.discrete.Discrete'>", |
|
":serialized:": "gAWVUgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLAowGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgQjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAmMAnU0lImIh5RSlChLA2gNTk5OSv////9K/////0sAdJRiTXAChZSMAUOUdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", |
|
"n": 2, |
|
"_shape": [], |
|
"dtype": "int64", |
|
"_np_random": "RandomState(MT19937)" |
|
}, |
|
"n_envs": 1, |
|
"num_timesteps": 100096, |
|
"_total_timesteps": 100000, |
|
"_num_timesteps_at_start": 0, |
|
"seed": 0, |
|
"action_noise": null, |
|
"start_time": 1670942230957984494, |
|
"learning_rate": { |
|
":type:": "<class 'function'>", |
|
":serialized:": "gAWVWwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTRsBQwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAdybF96b28zlIwIX19uYW1lX1+UjA1ybF96b28zLnV0aWxzlIwIX19maWxlX1+UjDQvaG9tZS9xZ2FsbG91ZWRlYy9ybC1iYXNlbGluZXMzLXpvby9ybF96b28zL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKIwScHJvZ3Jlc3NfcmVtYWluaW5nlIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgtdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAmMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu" |
|
}, |
|
"tensorboard_log": "runs/CartPoleNoVel-v1__ppo_lstm__1606308196__1670942228/CartPoleNoVel-v1", |
|
"lr_schedule": { |
|
":type:": "<class 'function'>", |
|
":serialized:": "gAWVWwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTRsBQwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAdybF96b28zlIwIX19uYW1lX1+UjA1ybF96b28zLnV0aWxzlIwIX19maWxlX1+UjDQvaG9tZS9xZ2FsbG91ZWRlYy9ybC1iYXNlbGluZXMzLXpvby9ybF96b28zL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKIwScHJvZ3Jlc3NfcmVtYWluaW5nlIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgtdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAmMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu" |
|
}, |
|
"_last_obs": null, |
|
"_last_episode_starts": { |
|
":type:": "<class 'numpy.ndarray'>", |
|
":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4=" |
|
}, |
|
"_last_original_obs": { |
|
":type:": "<class 'numpy.ndarray'>", |
|
":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAB2hjTkAAACADUkNvQAAAIBO7PU7AAAAgDV+87sAAACAhpKXOQAAAAAzWRa9AAAAAKJzOz0AAACAwBkvPQAAAAAPLBC9AAAAAKIeQL0AAAAAUN7zPAAAAABET3U8AAAAgBS0Dj0AAACAtrmIvAAAAIASmAq9AAAAAEqEET0AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISwSGlIwBQ5R0lFKULg==" |
|
}, |
|
"_episode_num": 0, |
|
"use_sde": false, |
|
"sde_sample_freq": -1, |
|
"_current_progress_remaining": -0.0009600000000000719, |
|
"ep_info_buffer": { |
|
":type:": "<class 'collections.deque'>", |
|
":serialized:": "gAWVGQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGIAAAAAAACMAWyUS5CMAXSUR0BjnTZ+QU5/dX2UKGgGR0BfwAAAAAAAaAdLf2gIR0Bjna/O+qR2dX2UKGgGR0BjIAAAAAAAaAdLmWgIR0BjttrqMWGidX2UKGgGR0BiAAAAAAAAaAdLkGgIR0Bjtx7PY4ACdX2UKGgGR0BjIAAAAAAAaAdLmWgIR0Bjt0sH0K7adX2UKGgGR0BhoAAAAAAAaAdLjWgIR0Bj3MbiqABldX2UKGgGR0BigAAAAAAAaAdLlGgIR0Bj3S508vEkdX2UKGgGR0BjYAAAAAAAaAdLm2gIR0Bj+d7MPjGUdX2UKGgGR0Bg4AAAAAAAaAdLh2gIR0Bj+yCrcTJydX2UKGgGR0BjoAAAAAAAaAdLnWgIR0BkFiMDOkckdX2UKGgGR0BiIAAAAAAAaAdLkWgIR0BkMvm3fAKwdX2UKGgGR0BkQAAAAAAAaAdLomgIR0BkM2CK77KrdX2UKGgGR0BiAAAAAAAAaAdLkGgIR0BkVTu2JBPbdX2UKGgGR0BpYAAAAAAAaAdLy2gIR0BkVXiaRZEEdX2UKGgGR0BioAAAAAAAaAdLlWgIR0BkVdaMaS9vdX2UKGgGR0BjoAAAAAAAaAdLnWgIR0BkVpqh11W9dX2UKGgGR0BkIAAAAAAAaAdLoWgIR0Bkch8BuGbkdX2UKGgGR0BkYAAAAAAAaAdLo2gIR0BkkfvF3pwCdX2UKGgGR0BpoAAAAAAAaAdLzWgIR0BksT8Nx2jgdX2UKGgGR0BmwAAAAAAAaAdLtmgIR0BksfWvr4WUdX2UKGgGR0Bs4AAAAAAAaAdL52gIR0BkzyMR6F/QdX2UKGgGR0BqQAAAAAAAaAdL0mgIR0Bk41VktmL+dX2UKGgGR0BwsAAAAAAAaAdNCwFoCEdAZOOq+8Gs3nV9lChoBkdAYwAAAAAAAGgHS5hoCEdAZP2eRPoFFHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGUYq2KEWZZ1fZQoaAZHQG8gAAAAAABoB0v5aAhHQGUYtXgccVB1fZQoaAZHQGkgAAAAAABoB0vJaAhHQGUtgMDwH7h1fZQoaAZHQHbwAAAAAABoB01vAWgIR0BlQyQHRkVfdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAZV/l0YCQtHV9lChoBkdAaIAAAAAAAGgHS8RoCEdAZV/iNKh+OXV9lChoBkdAccAAAAAAAGgHTRwBaAhHQGV3WiL2pQ11fZQoaAZHQGNgAAAAAABoB0ubaAhHQGV3eqzZ6D51fZQoaAZHQGUAAAAAAABoB0uoaAhHQGWOCUgSvkl1fZQoaAZHQGVgAAAAAABoB0uraAhHQGWPWz4UN8V1fZQoaAZHQGSgAAAAAABoB0ulaAhHQGWtO+AVfu11fZQoaAZHQGOAAAAAAABoB0ucaAhHQGXE5/Tb3491fZQoaAZHQGAAAAAAAABoB0uAaAhHQGXFMiKR+0B1fZQoaAZHQHtQAAAAAABoB021AWgIR0Bl25AdGRV7dX2UKGgGR0BkQAAAAAAAaAdLomgIR0Bl8rR4QjD9dX2UKGgGR0BmYAAAAAAAaAdLs2gIR0Bl8t5Qgs9TdX2UKGgGR0BiIAAAAAAAaAdLkWgIR0Bl8zutwJgLdX2UKGgGR0BjAAAAAAAAaAdLmGgIR0BmRUfms/6gdX2UKGgGR0Bj4AAAAAAAaAdLn2gIR0BmXv7JnxrjdX2UKGgGR0BwIAAAAAAAaAdNAgFoCEdAZniFvhqCYnV9lChoBkdAcuAAAAAAAGgHTS4BaAhHQGafMfigkC51fZQoaAZHQH9AAAAAAABoB030AWgIR0BmuIUBXCCSdX2UKGgGR0BoYAAAAAAAaAdLw2gIR0Bm2fBpHqeLdX2UKGgGR0BxYAAAAAAAaAdNFgFoCEdAZvQ5IYm9hHV9lChoBkdAaEAAAAAAAGgHS8JoCEdAZxM6jFhod3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGcv2w/xDst1fZQoaAZHQH9AAAAAAABoB030AWgIR0BnMAQ176YWdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAZ0rjZtelbnV9lChoBkdAa2AAAAAAAGgHS9toCEdAZ3DLCemNznV9lChoBkdAfmAAAAAAAGgHTeYBaAhHQGdxLFOwgT11fZQoaAZHQGPgAAAAAABoB0ufaAhHQGeY6uGKyfN1fZQoaAZHQGTgAAAAAABoB0unaAhHQGe0eF10T111fZQoaAZHQH9AAAAAAABoB030AWgIR0Bn5HQyAQQMdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAaBX3Tuv2XnV9lChoBkdAfeAAAAAAAGgHTd4BaAhHQGgw61kUbkx1fZQoaAZHQH9AAAAAAABoB030AWgIR0BoU/SjQAuJdX2UKGgGR0B68AAAAAAAaAdNrwFoCEdAaFSIk7fYSXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGh0/WDpTuR1fZQoaAZHQHvwAAAAAABoB02/AWgIR0Bojj655JK8dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAaK4xHG0eEXV9lChoBkdAfcAAAAAAAGgHTdwBaAhHQGjXQ7kn1Fp1fZQoaAZHQHWwAAAAAABoB01bAWgIR0Bo16HEdeY2dX2UKGgGR0B0QAAAAAAAaAdNRAFoCEdAaPtB2wFC9nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGkkoF3Y+St1fZQoaAZHQH9AAAAAAABoB030AWgIR0BpUsPH1e0HdX2UKGgGR0B8gAAAAAAAaAdNyAFoCEdAaVRLIPsiS3V9lChoBkdAenAAAAAAAGgHTacBaAhHQGmTMDnvDxd1fZQoaAZHQH9AAAAAAABoB030AWgIR0Bpk5kPMB6sdX2UKGgGR0BvYAAAAAAAaAdL+2gIR0BprlDF6zE8dX2UKGgGR0B6gAAAAAAAaAdNqAFoCEdAaccWJrLyMHV9lChoBkdAfVAAAAAAAGgHTdUBaAhHQGnnNHhCMP11fZQoaAZHQH3QAAAAAABoB03dAWgIR0BqCBqubI91dX2UKGgGR0B8YAAAAAAAaAdNxgFoCEdAakc7ulXRxHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGpHwxFiKBN1fZQoaAZHQHtgAAAAAABoB022AWgIR0BqYeIj4YaYdX2UKGgGR0B44AAAAAAAaAdNjgFoCEdAano5VfeDWnV9lChoBkdAe7AAAAAAAGgHTbsBaAhHQGp6PHT7VKB1fZQoaAZHQH1wAAAAAABoB03XAWgIR0BqpUT101ZUdX2UKGgGR0B6oAAAAAAAaAdNqgFoCEdAaqWZ4wAU+XV9lChoBkdAfqAAAAAAAGgHTeoBaAhHQGrdzFdcB2h1fZQoaAZHQHoAAAAAAABoB02gAWgIR0BrCCkXUH6edX2UKGgGR0B80AAAAAAAaAdNzQFoCEdAayyC5mRNh3V9lChoBkdAefAAAAAAAGgHTZ8BaAhHQGss0AcT8Hh1fZQoaAZHQHsAAAAAAABoB02wAWgIR0BrLQFgUlAvdX2UKGgGR0B7IAAAAAAAaAdNsgFoCEdAay3KEFnqV3V9lChoBkdAeNAAAAAAAGgHTY0BaAhHQGtZ0C7sfJV1fZQoaAZHQHugAAAAAABoB026AWgIR0BrdYdS2phndX2UKGgGR0B4AAAAAAAAaAdNgAFoCEdAa59ubZvkzXV9lChoBkdAdyAAAAAAAGgHTXIBaAhHQGvRwRwqAjJ1fZQoaAZHQHwQAAAAAABoB03BAWgIR0Br7H7k4m1IdX2UKGgGR0B5gAAAAAAAaAdNmAFoCEdAbAeYekpI+XV9lChoBkdAfFAAAAAAAGgHTcUBaAhHQGwp3vphWo51fZQoaAZHQH9AAAAAAABoB030AWgIR0BsKz1M/QjVdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAbGTzmwJPZnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGyGyhSLqD91fZQoaAZHQH9AAAAAAABoB030AWgIR0Bs36Ll3hXKdWUu" |
|
}, |
|
"ep_success_buffer": { |
|
":type:": "<class 'collections.deque'>", |
|
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg==" |
|
}, |
|
"_n_updates": 7820, |
|
"n_steps": 32, |
|
"gamma": 0.98, |
|
"gae_lambda": 0.8, |
|
"ent_coef": 0.0, |
|
"vf_coef": 0.5, |
|
"max_grad_norm": 0.5, |
|
"batch_size": 256, |
|
"n_epochs": 20, |
|
"clip_range": { |
|
":type:": "<class 'function'>", |
|
":serialized:": "gAWVWwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTRsBQwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAdybF96b28zlIwIX19uYW1lX1+UjA1ybF96b28zLnV0aWxzlIwIX19maWxlX1+UjDQvaG9tZS9xZ2FsbG91ZWRlYy9ybC1iYXNlbGluZXMzLXpvby9ybF96b28zL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKIwScHJvZ3Jlc3NfcmVtYWluaW5nlIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgtdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAmMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu" |
|
}, |
|
"clip_range_vf": null, |
|
"normalize_advantage": true, |
|
"target_kl": null, |
|
"_last_lstm_states": { |
|
":type:": "<class 'sb3_contrib.common.recurrent.type_aliases.RNNStates'>", |
|
":serialized:": "gAWVSgkAAAAAAACMKXNiM19jb250cmliLmNvbW1vbi5yZWN1cnJlbnQudHlwZV9hbGlhc2VzlIwJUk5OU3RhdGVzlJOUjAx0b3JjaC5fdXRpbHOUjBJfcmVidWlsZF90ZW5zb3JfdjKUk5QojA10b3JjaC5zdG9yYWdllIwQX2xvYWRfZnJvbV9ieXRlc5STlEL+AQAAgAKKCmz8nEb5IGqoUBkugAJN6QMugAJ9cQAoWBAAAABwcm90b2NvbF92ZXJzaW9ucQFN6QNYDQAAAGxpdHRsZV9lbmRpYW5xAohYCgAAAHR5cGVfc2l6ZXNxA31xBChYBQAAAHNob3J0cQVLAlgDAAAAaW50cQZLBFgEAAAAbG9uZ3EHSwR1dS6AAihYBwAAAHN0b3JhZ2VxAGN0b3JjaApGbG9hdFN0b3JhZ2UKcQFYDgAAADkzODc2MjU4NjA5OTg0cQJYBgAAAGN1ZGE6MHEDS0BOdHEEUS6AAl1xAFgOAAAAOTM4NzYyNTg2MDk5ODRxAWEuQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIWUUpRLAEsBSwFLQIeUS0BLQEsBh5SJjAtjb2xsZWN0aW9uc5SMC09yZGVyZWREaWN0lJOUKVKUdJRSlGgFKGgIQv4BAACAAooKbPycRvkgaqhQGS6AAk3pAy6AAn1xAChYEAAAAHByb3RvY29sX3ZlcnNpb25xAU3pA1gNAAAAbGl0dGxlX2VuZGlhbnECiFgKAAAAdHlwZV9zaXplc3EDfXEEKFgFAAAAc2hvcnRxBUsCWAMAAABpbnRxBksEWAQAAABsb25ncQdLBHV1LoACKFgHAAAAc3RvcmFnZXEAY3RvcmNoCkZsb2F0U3RvcmFnZQpxAVgOAAAAOTM4NzYyNTg2MDk0NDBxAlgGAAAAY3VkYTowcQNLQE50cQRRLoACXXEAWA4AAAA5Mzg3NjI1ODYwOTQ0MHEBYS5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUhZRSlEsASwFLAUtAh5RLQEtASwGHlIloEClSlHSUUpSGlGgFKGgIQv4BAACAAooKbPycRvkgaqhQGS6AAk3pAy6AAn1xAChYEAAAAHByb3RvY29sX3ZlcnNpb25xAU3pA1gNAAAAbGl0dGxlX2VuZGlhbnECiFgKAAAAdHlwZV9zaXplc3EDfXEEKFgFAAAAc2hvcnRxBUsCWAMAAABpbnRxBksEWAQAAABsb25ncQdLBHV1LoACKFgHAAAAc3RvcmFnZXEAY3RvcmNoCkZsb2F0U3RvcmFnZQpxAVgOAAAAOTM4NzU0NzM5NzY5MjhxAlgGAAAAY3VkYTowcQNLQE50cQRRLoACXXEAWA4AAAA5Mzg3NTQ3Mzk3NjkyOHEBYS5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUhZRSlEsASwFLAUtAh5RLQEtASwGHlIloEClSlHSUUpRoBShoCEL+AQAAgAKKCmz8nEb5IGqoUBkugAJN6QMugAJ9cQAoWBAAAABwcm90b2NvbF92ZXJzaW9ucQFN6QNYDQAAAGxpdHRsZV9lbmRpYW5xAohYCgAAAHR5cGVfc2l6ZXNxA31xBChYBQAAAHNob3J0cQVLAlgDAAAAaW50cQZLBFgEAAAAbG9uZ3EHSwR1dS6AAihYBwAAAHN0b3JhZ2VxAGN0b3JjaApGbG9hdFN0b3JhZ2UKcQFYDgAAADkzODc2MjU4NjU5MDcycQJYBgAAAGN1ZGE6MHEDS0BOdHEEUS6AAl1xAFgOAAAAOTM4NzYyNTg2NTkwNzJxAWEuQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIWUUpRLAEsBSwFLQIeUS0BLQEsBh5SJaBApUpR0lFKUhpSGlIGULg==" |
|
} |
|
} |