Quentin Gallouédec commited on
Commit
c686e68
1 Parent(s): 4097056

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Walker2DBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: Walker2DBulletEnv-v0
16
+ type: Walker2DBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 2547.56 +/- 13.19
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **Walker2DBulletEnv-v0**
25
+ This is a trained model of a **PPO** agent playing **Walker2DBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo ppo --env Walker2DBulletEnv-v0 -orga qgallouedec -f logs/
47
+ python -m rl_zoo3.enjoy --algo ppo --env Walker2DBulletEnv-v0 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo ppo --env Walker2DBulletEnv-v0 -orga qgallouedec -f logs/
53
+ python -m rl_zoo3.enjoy --algo ppo --env Walker2DBulletEnv-v0 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo ppo --env Walker2DBulletEnv-v0 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo ppo --env Walker2DBulletEnv-v0 -f logs/ -orga qgallouedec
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 128),
66
+ ('clip_range', 'lin_0.4'),
67
+ ('ent_coef', 0.0),
68
+ ('gae_lambda', 0.9),
69
+ ('gamma', 0.99),
70
+ ('learning_rate', 3e-05),
71
+ ('max_grad_norm', 0.5),
72
+ ('n_envs', 16),
73
+ ('n_epochs', 20),
74
+ ('n_steps', 512),
75
+ ('n_timesteps', 2000000.0),
76
+ ('normalize', True),
77
+ ('policy', 'MlpPolicy'),
78
+ ('policy_kwargs',
79
+ 'dict(log_std_init=-2, ortho_init=False, activation_fn=nn.ReLU, '
80
+ 'net_arch=dict(pi=[256, 256], vf=[256, 256]) )'),
81
+ ('sde_sample_freq', 4),
82
+ ('use_sde', True),
83
+ ('vf_coef', 0.5),
84
+ ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
85
+ ```
args.yml ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - ppo
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - Walker2DBulletEnv-v0
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 20
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - []
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - logs
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 5
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - -1
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 2326884128
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - runs/Walker2DBulletEnv-v0__ppo__2326884128__1676780237
64
+ - - track
65
+ - true
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - openrlbenchmark
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - wandb_tags
81
+ - []
82
+ - - yaml_file
83
+ - null
config.yml ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 128
4
+ - - clip_range
5
+ - lin_0.4
6
+ - - ent_coef
7
+ - 0.0
8
+ - - gae_lambda
9
+ - 0.9
10
+ - - gamma
11
+ - 0.99
12
+ - - learning_rate
13
+ - 3.0e-05
14
+ - - max_grad_norm
15
+ - 0.5
16
+ - - n_envs
17
+ - 16
18
+ - - n_epochs
19
+ - 20
20
+ - - n_steps
21
+ - 512
22
+ - - n_timesteps
23
+ - 2000000.0
24
+ - - normalize
25
+ - true
26
+ - - policy
27
+ - MlpPolicy
28
+ - - policy_kwargs
29
+ - dict(log_std_init=-2, ortho_init=False, activation_fn=nn.ReLU, net_arch=dict(pi=[256,
30
+ 256], vf=[256, 256]) )
31
+ - - sde_sample_freq
32
+ - 4
33
+ - - use_sde
34
+ - true
35
+ - - vf_coef
36
+ - 0.5
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
ppo-Walker2DBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37daf9901774c861e031266c11556f60886ee3c4f4af7bbd0b5f90e4a957967f
3
+ size 1797904
ppo-Walker2DBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0a6
ppo-Walker2DBulletEnv-v0/data ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f28d8d92ee0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f28d8d92f70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f28d8d94040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f28d8d940d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f28d8d94160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f28d8d941f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f28d8d94280>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f28d8d94310>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f28d8d943a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f28d8d94430>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f28d8d944c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f28d8d94550>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f28d9480dc0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWViwAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA1hY3RpdmF0aW9uX2ZulIwbdG9yY2gubm4ubW9kdWxlcy5hY3RpdmF0aW9ulIwEUmVMVZSTlIwIbmV0X2FyY2iUfZQojAJwaZRdlChNAAFNAAFljAJ2ZpRdlChNAAFNAAFldXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>",
29
+ "net_arch": {
30
+ "pi": [
31
+ 256,
32
+ 256
33
+ ],
34
+ "vf": [
35
+ 256,
36
+ 256
37
+ ]
38
+ }
39
+ },
40
+ "observation_space": {
41
+ ":type:": "<class 'gym.spaces.box.Box'>",
42
+ ":serialized:": "gAWVMQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLFoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWWAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxaFlIwBQ5R0lFKUjARoaWdolGgTKJZYAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLFoWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLFoWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLFoWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
43
+ "dtype": "float32",
44
+ "_shape": [
45
+ 22
46
+ ],
47
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf]",
48
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf]",
49
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False]",
50
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False]",
51
+ "_np_random": null
52
+ },
53
+ "action_space": {
54
+ ":type:": "<class 'gym.spaces.box.Box'>",
55
+ ":serialized:": "gAWVPAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLBoWUjAFDlHSUUpSMBGhpZ2iUaBMolhgAAAAAAAAAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwaFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWBgAAAAAAAAABAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYGAAAAAAAAAAEBAQEBAZRoIksGhZRoFnSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5RoLowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwHTVQxOTkzN5SMBXN0YXRllH2UKIwDa2V5lGgTKJbACQAAAAAAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5RoCIwCdTSUiYiHlFKUKEsDaAxOTk5K/////0r/////SwB0lGJNcAKFlGgWdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
56
+ "dtype": "float32",
57
+ "_shape": [
58
+ 6
59
+ ],
60
+ "low": "[-1. -1. -1. -1. -1. -1.]",
61
+ "high": "[1. 1. 1. 1. 1. 1.]",
62
+ "bounded_below": "[ True True True True True True]",
63
+ "bounded_above": "[ True True True True True True]",
64
+ "_np_random": "RandomState(MT19937)"
65
+ },
66
+ "n_envs": 1,
67
+ "num_timesteps": 2007040,
68
+ "_total_timesteps": 2000000,
69
+ "_num_timesteps_at_start": 0,
70
+ "seed": 0,
71
+ "action_noise": null,
72
+ "start_time": 1676780239512698923,
73
+ "learning_rate": {
74
+ ":type:": "<class 'function'>",
75
+ ":serialized:": "gAWV5QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWS9ncGZzZHN3b3JrL3Byb2plY3RzL3JlY2gvdWxpL3VwZjgyc3Avc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxZL2dwZnNkc3dvcmsvcHJvamVjdHMvcmVjaC91bGkvdXBmODJzcC9zdGFibGUtYmFzZWxpbmVzMy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPv91EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
76
+ },
77
+ "tensorboard_log": "runs/Walker2DBulletEnv-v0__ppo__2326884128__1676780237/Walker2DBulletEnv-v0",
78
+ "lr_schedule": {
79
+ ":type:": "<class 'function'>",
80
+ ":serialized:": "gAWV5QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWS9ncGZzZHN3b3JrL3Byb2plY3RzL3JlY2gvdWxpL3VwZjgyc3Avc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxZL2dwZnNkc3dvcmsvcHJvamVjdHMvcmVjaC91bGkvdXBmODJzcC9zdGFibGUtYmFzZWxpbmVzMy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPv91EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
81
+ },
82
+ "_last_obs": null,
83
+ "_last_episode_starts": {
84
+ ":type:": "<class 'numpy.ndarray'>",
85
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAEAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
86
+ },
87
+ "_last_original_obs": {
88
+ ":type:": "<class 'numpy.ndarray'>",
89
+ ":serialized:": "gAWV9QUAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaABQAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAhkmAPwAAAACoFoY/AAAAACfX+zwAAAAAVa6BPwAAAAAz1YA/AAAAAN9JmL0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEd0eT8AAAAAwwVzPwAAAABFy429AAAAAJBghj8AAAAAOxp3PwAAAABsaIQ9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAK6IY/AAAAAHq4hj8AAAAA/WGVPQAAAABuy3A/AAAAAO9ocj8AAAAACW5yPQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAXtKFPwAAAAAWAIM/AAAAAKeC9b0AAAAAfpB4PwAAAACvTIQ/AAAAAFJUPL0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOsFhT8AAAAAW0KDPwAAAADBl+G9AAAAAA6wgj8AAAAAx+WGPwAAAABWTNI9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICiaoI/AAAAAK7QfT8AAAAA5ul/vAAAAADlP3c/AAAAAJQdgz8AAAAASebuvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAhqdyPwAAAAD/I3Y/AAAAANQiID0AAAAAVH10PwAAAABE5IQ/AAAAAH3arj0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLE1cz8AAAAA2QBwPwAAAABCtsS9AAAAAIg4bz8AAAAALHdvPwAAAAB90aA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDpRXo/AAAAAC96bT8AAAAAnkJ7OgAAAABTO4A/AAAAAKjvgD8AAAAAHj+gvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+P6HPwAAAAAvGYk/AAAAAIg9VT0AAAAAXaeDPwAAAADmRnQ/AAAAADj1oj0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKUFhT8AAAAA/o97PwAAAAD7/pg8AAAAAIWOhj8AAAAAFsB4PwAAAADQWoy9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAy14g/AAAAAAr1bT8AAAAAoalhPQAAAADsjm8/AAAAAH6/iT8AAAAAJ+zrvAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2Wh5PwAAAAAww4c/AAAAADyHnL0AAAAAFCiJPwAAAABEUIc/AAAAAMJguz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFC6fD8AAAAAS3GJPwAAAACUF2C9AAAAAGA+gD8AAAAAzHKBPwAAAACYb+O8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBTdHw/AAAAAM+rgj8AAAAAnA77PQAAAACZGYM/AAAAALBDhz8AAAAAHoOkPQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAeH2FPwAAAACUdYE/AAAAAEAwYj0AAAAAE+p7PwAAAAABAnE/AAAAAMQd1j0AAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxBLFoaUjAFDlHSUUpQu"
90
+ },
91
+ "_episode_num": 0,
92
+ "use_sde": true,
93
+ "sde_sample_freq": 4,
94
+ "_current_progress_remaining": -0.0035199999999999676,
95
+ "ep_info_buffer": {
96
+ ":type:": "<class 'collections.deque'>",
97
+ ":serialized:": "gAWVMgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKLV2SamXPaMAWyUTegDjAF0lEdAv6OReOXE63V9lChoBkdAohSempEQXmgHTegDaAhHQL+kfvTPSlZ1fZQoaAZHQEkiJiy6cy5oB0s8aAhHQL+k3rylN111fZQoaAZHQE/a8U21lXloB0s3aAhHQL+mEUzKs+51fZQoaAZHQKH5RNsWO6xoB03oA2gIR0C/pp3jU/fPdX2UKGgGR0AqEmNzbN8maAdLD2gIR0C/pvHsTnJUdX2UKGgGR0BCBBClabF1aAdLLWgIR0C/pwvqcEvCdX2UKGgGR0CiRfMRHww1aAdN6ANoCEdAv6uj2ugYg3V9lChoBkdAokq8x0uDjGgHTegDaAhHQL+6qlabF0h1fZQoaAZHQKI4+aw2VFBoB03oA2gIR0C/uuqshgVodX2UKGgGR0CiJYAlv60qaAdN6ANoCEdAv7smE/Spi3V9lChoBkdAV8vKT0QK8mgHS0RoCEdAv7xlr8BMjHV9lChoBkdAouIV5dGAkWgHTegDaAhHQL+8+7+T/yZ1fZQoaAZHQKKwXDGcWj5oB03oA2gIR0C/vkQ/TspodX2UKGgGR0Ci/rRx95QhaAdN6ANoCEdAv8DhMoMKC3V9lChoBkdAordu7jDKo2gHTegDaAhHQL/ClH31zyV1fZQoaAZHQIBUnluFYdRoB00aAWgIR0C/wyG5c1O1dX2UKGgGR0Cih7o+OfdzaAdN6ANoCEdAv8NWMdcSoXV9lChoBkdAmiYrh3qzJWgHTcgCaAhHQL/EoB2fTTh1fZQoaAZHQKJkV5Qgs9VoB03oA2gIR0C/xKvk/8l5dX2UKGgGR0CirFrmQr+YaAdN6ANoCEdAv/G0JiRW93V9lChoBkdAoqXEzMzMzWgHTegDaAhHQL/xxfvWpZR1fZQoaAZHQKKdmu5BkZtoB03oA2gIR0C/8pRvvSc9dX2UKGgGR0BTG4DxLCemaAdLS2gIR0C/8q/gR9PUdX2UKGgGR0CihhNpEhJRaAdN6ANoCEdAv/TG7FsHjnV9lChoBkdAorQdrGipN2gHTegDaAhHQL/3PbYbsGB1fZQoaAZHQIkrn5WRzRxoB02RAWgIR0C/+ntO2y9mdX2UKGgGR0Ci4Dxj8UEgaAdN6ANoCEdAv/v9WMju8nV9lChoBkdAopMll9SdfGgHTegDaAhHQMAFi7WEsat1fZQoaAZHQKKA3sabWmRoB03oA2gIR0DABcnjU/fPdX2UKGgGR0CiiDSqMm4RaAdN6ANoCEdAwAZrA8jiXXV9lChoBkdAigrZN47ihmgHTW4BaAhHQMAGtZTho/R1fZQoaAZHQEtOhOgxrSFoB0staAhHQMAG6RplBhR1fZQoaAZHQEYerIYFaB9oB0smaAhHQMAHUu1v2oN1fZQoaAZHQKKIMpvxYq5oB03oA2gIR0DAB1rGcWj5dX2UKGgGR0CiRzwL3K0VaAdN6ANoCEdAwAir9Vmz0HV9lChoBkdAovQoI+nqFGgHTegDaAhHQMAJhdSuQp51fZQoaAZHQKKiuUj9n9NoB03oA2gIR0DACcy4UeuFdX2UKGgGR0Cii5w1JlJ6aAdN6ANoCEdAwAnnUXHim3V9lChoBkdAolz7vAoG6mgHTegDaAhHQMAKk3pfQa91fZQoaAZHQDJFHqeK8+RoB0sSaAhHQMAKxied07t1fZQoaAZHQKHw4elsP8RoB03oA2gIR0DACuwxagVXdX2UKGgGR0Ci6L1M23rlaAdN6ANoCEdAwBJm5U96knV9lChoBkdAotnDpaA4GWgHTegDaAhHQMASdIUi6hB1fZQoaAZHQGNmpQcghbJoB0tgaAhHQMATDXMINVl1fZQoaAZHQCqcH6dlNDdoB0sQaAhHQMATOiUPhAJ1fZQoaAZHQKKgSNrj5sVoB03oA2gIR0DAE3/KU3XJdX2UKGgGR0CNCzMoMKCyaAdNlgFoCEdAwBVSeYD1XnV9lChoBkdAmWjdfPX05GgHTbYCaAhHQMAVYwgcLjR1fZQoaAZHQKJrZqoqCpZoB03oA2gIR0DAFlfKW9lFdX2UKGgGR0Cil7eyJKraaAdN6ANoCEdAwBcW/M4cWHV9lChoBkdAhrLJtBOYY2gHTVABaAhHQMAXKQmE5AB1fZQoaAZHQKKJh5MURFtoB03oA2gIR0DAF5A8jiXIdX2UKGgGR0CiyvmD+R5kaAdN6ANoCEdAwB7iVNYbKnV9lChoBkdAa5su/UONHmgHS31oCEdAwC8gpBHCoHV9lChoBkdAoeyuyzHCGmgHTegDaAhHQMAviYYixFB1fZQoaAZHQKJ0y5eZ5RloB03oA2gIR0DAL5F6zE75dX2UKGgGR0CiI3FHjIaMaAdN6ANoCEdAwDDiIZZSvXV9lChoBkdAba6qxTsIFGgHS4doCEdAwDELO8kD6nV9lChoBkdAoh9+5OJtSGgHTegDaAhHQMAxuhHTZxt1fZQoaAZHQKHHlHktEohoB03oA2gIR0DAMhtk+X7cdX2UKGgGR0Ciny7gCOm0aAdN6ANoCEdAwDL6/h2nsXV9lChoBkdAmio/n0TURWgHTcQCaAhHQMAzQjHfdh11fZQoaAZHQKJhea3qiXZoB03oA2gIR0DAM4gM2FWXdX2UKGgGR0CidZMgU1yeaAdN6ANoCEdAwDqpNX5nDnV9lChoBkdAoX41dNWU8mgHTegDaAhHQMA7b6QV9F51fZQoaAZHQIz2GoYNy5toB02aAWgIR0DAPHPo9s7/dX2UKGgGR0CI6O1pCa7VaAdNcwFoCEdAwDzf4u9OAXV9lChoBkdAokwEmY0EYGgHTegDaAhHQMA9mJL/S6V1fZQoaAZHQKHaVD4xk/doB03oA2gIR0DAPo+lImPYdX2UKGgGR0Cik8iZv1lHaAdN6ANoCEdAwD9QQnx8UnV9lChoBkdAonit3Y+SsGgHTegDaAhHQMA/Yi6H0sh1fZQoaAZHQKI+SscQyyloB03oA2gIR0DAQAcGmk30dX2UKGgGR0CisHmr0aqCaAdN6ANoCEdAwEg01Cw8n3V9lChoBkdAonDQ0bcXWWgHTegDaAhHQMBInawMYuV1fZQoaAZHQKKqeeMhouhoB03oA2gIR0DASh4GOdXldX2UKGgGR0Cik9GL9/BnaAdN6ANoCEdAwEst3JxNqXV9lChoBkdAojGO0JF9a2gHTegDaAhHQMBMC4Fiay91fZQoaAZHQKI5mY/FBIFoB03oA2gIR0DATFKlgtvodX2UKGgGR0Ci0MLwOOKgaAdN6ANoCEdAwEyYS8J2MnV9lChoBkdAoqtwHJLdvmgHTegDaAhHQMBMperuIAR1fZQoaAZHQKKTQxFiKBNoB03oA2gIR0DAY6a2x6fKdX2UKGgGR0CRBRf3evZAaAdN3wFoCEdAwGQVWvr4WXV9lChoBkdAoiSo2qDK5mgHTegDaAhHQMBkrCPhhph1fZQoaAZHQKLeLinYQJ5oB03oA2gIR0DAZRf+KjzqdX2UKGgGR0BkmW+23KB/aAdLcGgIR0DAZU5DohZAdX2UKGgGR0CihpB86V+raAdN6ANoCEdAwGXQeHSF5HV9lChoBkdAYOImY0EX+GgHS1xoCEdAwGYZS1E3KnV9lChoBkdAkdy3gk1MumgHTR8CaAhHQMBmSTollbx1fZQoaAZHQIS6ABxPwd9oB004AWgIR0DAZktBD5TIdX2UKGgGR0A+pvs7dSEUaAdLI2gIR0DAZnuFN+LFdX2UKGgGR0AxfaoddVvNaAdLE2gIR0DAZrDKYAsDdX2UKGgGR0CijVNp/PPcaAdN6ANoCEdAwGbHxm03O3V9lChoBkdAjn0kU9IPLGgHTaQBaAhHQMBm4QBxPwd1fZQoaAZHQKLHZzxwyZdoB03oA2gIR0DAZ4kpqh11dX2UKGgGR0Cil23TVlPKaAdN6ANoCEdAwGebWn0kGHV9lChoBkdAkTYeRT0g82gHTeEBaAhHQMBoGV94NZx1fZQoaAZHQKJ65guyu6poB03oA2gIR0DAaEDGcWj5dX2UKGgGR0BbTUqQRwqBaAdLSmgIR0DAaGwfnwG4dX2UKGgGR0CYI1V5a/yoaAdNmwJoCEdAwGi5SpiqhnVlLg=="
98
+ },
99
+ "ep_success_buffer": {
100
+ ":type:": "<class 'collections.deque'>",
101
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
102
+ },
103
+ "_n_updates": 4900,
104
+ "n_steps": 512,
105
+ "gamma": 0.99,
106
+ "gae_lambda": 0.9,
107
+ "ent_coef": 0.0,
108
+ "vf_coef": 0.5,
109
+ "max_grad_norm": 0.5,
110
+ "batch_size": 128,
111
+ "n_epochs": 20,
112
+ "clip_range": {
113
+ ":type:": "<class 'function'>",
114
+ ":serialized:": "gAWVhAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxIL2dwZnNkc3dvcmsvcHJvamVjdHMvcmVjaC91bGkvdXBmODJzcC9ybC1iYXNlbGluZXMzLXpvby9ybF96b28zL3V0aWxzLnB5lIwEZnVuY5RNJQFDAgAGlIwOaW5pdGlhbF92YWx1ZV+UhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAdybF96b28zlIwIX19uYW1lX1+UjA1ybF96b28zLnV0aWxzlIwIX19maWxlX1+UjEgvZ3Bmc2Rzd29yay9wcm9qZWN0cy9yZWNoL3VsaS91cGY4MnNwL3JsLWJhc2VsaW5lczMtem9vL3JsX3pvbzMvdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwdbGluZWFyX3NjaGVkdWxlLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQojBJwcm9ncmVzc19yZW1haW5pbmeUjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC11jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5RoCYwLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP9mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
115
+ },
116
+ "clip_range_vf": null,
117
+ "normalize_advantage": true,
118
+ "target_kl": null
119
+ }
ppo-Walker2DBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9cdcfff5858f0dcfd26fb8aaa4f38f5a00f00bbe9129c1097e97d2eedcb7b2ae
3
+ size 1184048
ppo-Walker2DBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb8ad9dae81e76a782720e61f0b9ba89fa4fcb203a2f453eaf87ae6db2d18520
3
+ size 591230
ppo-Walker2DBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-Walker2DBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
2
+ - Python: 3.9.12
3
+ - Stable-Baselines3: 1.8.0a6
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8ad4ff6a82416e4bdbd2ba3eb5ac251de160490bf21f584ebeba265253ae686
3
+ size 1107821
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 2547.5559668, "std_reward": 13.18701428533549, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T19:28:13.522230"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4eb1c88e7cc449598ea8839681a9c86a5edc289315c1a5ad713923acf5a925e6
3
+ size 212360
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02194817a7162e5e9ebd6944e8febe66ad1707da56f365b65c05b2b818aa3f64
3
+ size 6064