Quentin Gallouédec commited on
Commit
fba6a00
1 Parent(s): c4c31f6

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - InvertedPendulum-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: InvertedPendulum-v2
16
+ type: InvertedPendulum-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1000.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **InvertedPendulum-v2**
25
+ This is a trained model of a **PPO** agent playing **InvertedPendulum-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo ppo --env InvertedPendulum-v2 -orga qgallouedec -f logs/
47
+ python -m rl_zoo3.enjoy --algo ppo --env InvertedPendulum-v2 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo ppo --env InvertedPendulum-v2 -orga qgallouedec -f logs/
53
+ python -m rl_zoo3.enjoy --algo ppo --env InvertedPendulum-v2 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo ppo --env InvertedPendulum-v2 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo ppo --env InvertedPendulum-v2 -f logs/ -orga qgallouedec
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 64),
66
+ ('clip_range', 0.4),
67
+ ('ent_coef', 1.37976e-07),
68
+ ('gae_lambda', 0.9),
69
+ ('gamma', 0.999),
70
+ ('learning_rate', 0.000222425),
71
+ ('max_grad_norm', 0.3),
72
+ ('n_envs', 1),
73
+ ('n_epochs', 5),
74
+ ('n_steps', 32),
75
+ ('n_timesteps', 1000000.0),
76
+ ('normalize', True),
77
+ ('policy', 'MlpPolicy'),
78
+ ('vf_coef', 0.19816),
79
+ ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
80
+ ```
args.yml ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - ppo
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - InvertedPendulum-v2
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 20
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - []
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - logs
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 5
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - -1
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 3255082071
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - runs/InvertedPendulum-v2__ppo__3255082071__1675821351
64
+ - - track
65
+ - true
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - openrlbenchmark
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - wandb_tags
81
+ - []
82
+ - - yaml_file
83
+ - null
config.yml ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 64
4
+ - - clip_range
5
+ - 0.4
6
+ - - ent_coef
7
+ - 1.37976e-07
8
+ - - gae_lambda
9
+ - 0.9
10
+ - - gamma
11
+ - 0.999
12
+ - - learning_rate
13
+ - 0.000222425
14
+ - - max_grad_norm
15
+ - 0.3
16
+ - - n_envs
17
+ - 1
18
+ - - n_epochs
19
+ - 5
20
+ - - n_steps
21
+ - 32
22
+ - - n_timesteps
23
+ - 1000000.0
24
+ - - normalize
25
+ - true
26
+ - - policy
27
+ - MlpPolicy
28
+ - - vf_coef
29
+ - 0.19816
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
ppo-InvertedPendulum-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f44bfc429eda27f782fa2941ab4395ca36042221ceef171a84a759607b4b9a9e
3
+ size 143251
ppo-InvertedPendulum-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0a6
ppo-InvertedPendulum-v2/data ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1d6b752ee0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1d6b752f70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1d6b754040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1d6b7540d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f1d6b754160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f1d6b7541f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1d6b754280>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1d6b754310>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f1d6b7543a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1d6b754430>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1d6b7544c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1d6b754550>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f1d6b755080>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVlwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/5RoCksEhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwf5RoCksEhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgQAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksEhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolgQAAAAAAAAAAAAAAJRoIUsEhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
27
+ "dtype": "float64",
28
+ "_shape": [
29
+ 4
30
+ ],
31
+ "low": "[-inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf]",
33
+ "bounded_below": "[False False False False]",
34
+ "bounded_above": "[False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.box.Box'>",
39
+ ":serialized:": "gAWVBAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAEDAlGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAQECUaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
40
+ "dtype": "float32",
41
+ "_shape": [
42
+ 1
43
+ ],
44
+ "low": "[-3.]",
45
+ "high": "[3.]",
46
+ "bounded_below": "[ True]",
47
+ "bounded_above": "[ True]",
48
+ "_np_random": "RandomState(MT19937)"
49
+ },
50
+ "n_envs": 1,
51
+ "num_timesteps": 1000000,
52
+ "_total_timesteps": 1000000,
53
+ "_num_timesteps_at_start": 0,
54
+ "seed": 0,
55
+ "action_noise": null,
56
+ "start_time": 1675821355132766216,
57
+ "learning_rate": {
58
+ ":type:": "<class 'function'>",
59
+ ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL3FnYWxsb3VlZGVjL2Vudl9iZW5jaG1hcmsvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9xZ2FsbG91ZWRlYy9lbnZfYmVuY2htYXJrL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8tJ1gznbw+hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
60
+ },
61
+ "tensorboard_log": "runs/InvertedPendulum-v2__ppo__3255082071__1675821351/InvertedPendulum-v2",
62
+ "lr_schedule": {
63
+ ":type:": "<class 'function'>",
64
+ ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL3FnYWxsb3VlZGVjL2Vudl9iZW5jaG1hcmsvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9xZ2FsbG91ZWRlYy9lbnZfYmVuY2htYXJrL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8tJ1gznbw+hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
65
+ },
66
+ "_last_obs": null,
67
+ "_last_episode_starts": {
68
+ ":type:": "<class 'numpy.ndarray'>",
69
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
70
+ },
71
+ "_last_original_obs": {
72
+ ":type:": "<class 'numpy.ndarray'>",
73
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAOjz+Wg9nF0/SAKf6gwsWL/I1sVGvEF1v578NuFvbno/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwSGlIwBQ5R0lFKULg=="
74
+ },
75
+ "_episode_num": 0,
76
+ "use_sde": false,
77
+ "sde_sample_freq": -1,
78
+ "_current_progress_remaining": 0.0,
79
+ "ep_info_buffer": {
80
+ ":type:": "<class 'collections.deque'>",
81
+ ":serialized:": "gAWVKgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF+AAAAAAACMAWyUS36MAXSUR0Cm40cUdq+KdX2UKGgGR0BcQAAAAAAAaAdLcWgIR0Cm5BbHQyAQdX2UKGgGR0BZgAAAAAAAaAdLZmgIR0Cm5MFh5PdmdX2UKGgGR0BggAAAAAAAaAdLhGgIR0Cm5vA7gbZOdX2UKGgGR0BlwAAAAAAAaAdLrmgIR0Cm6BYv38GcdX2UKGgGR0BjIAAAAAAAaAdLmWgIR0Cm6PTB68g7dX2UKGgGR0CPQAAAAAAAaAdN6ANoCEdApu9cEq2BrnV9lChoBkdAj0AAAAAAAGgHTegDaAhHQKb1uz544ZN1fZQoaAZHQI9AAAAAAABoB03oA2gIR0Cm+/CnYQJ5dX2UKGgGR0CPQAAAAAAAaAdN6ANoCEdApwIVhVlwtXV9lChoBkdAj0AAAAAAAGgHTegDaAhHQKcHrZid8Rd1fZQoaAZHQI9AAAAAAABoB03oA2gIR0CnDgR15jYqdX2UKGgGR0CPQAAAAAAAaAdN6ANoCEdApxPyquKXOXV9lChoBkdAj0AAAAAAAGgHTegDaAhHQKcZ7NLUTct1fZQoaAZHQI9AAAAAAABoB03oA2gIR0CnICcXm/34dX2UKGgGR0CPQAAAAAAAaAdN6ANoCEdApyZsDSw4bXV9lChoBkdAj0AAAAAAAGgHTegDaAhHQKcsgtkFwDN1fZQoaAZHQI9AAAAAAABoB03oA2gIR0CnMpACW/rTdX2UKGgGR0CPQAAAAAAAaAdN6ANoCEdApziTLlmvn3V9lChoBkdAj0AAAAAAAGgHTegDaAhHQKc+vmwqy4Z1fZQoaAZHQI9AAAAAAABoB03oA2gIR0CnRO2A5JbudX2UKGgGR0CPQAAAAAAAaAdN6ANoCEdAp0tNWIXTE3V9lChoBkdAj0AAAAAAAGgHTegDaAhHQKdRVX+2mYV1fZQoaAZHQI9AAAAAAABoB03oA2gIR0CnVwhhQWN4dX2UKGgGR0CPQAAAAAAAaAdN6ANoCEdAp1014cFQmHV9lChoBkdAj0AAAAAAAGgHTegDaAhHQKdjNuAqd6N1fZQoaAZHQI9AAAAAAABoB03oA2gIR0CnaXHhS9/SdX2UKGgGR0CPQAAAAAAAaAdN6ANoCEdAp2/xY9xIa3V9lChoBkdAj0AAAAAAAGgHTegDaAhHQKd18EL6UJR1fZQoaAZHQI9AAAAAAABoB03oA2gIR0Cne+IN/e+FdX2UKGgGR0CPQAAAAAAAaAdN6ANoCEdAp4oSxs2vS3V9lChoBkdAj0AAAAAAAGgHTegDaAhHQKePhc6eXiR1fZQoaAZHQI9AAAAAAABoB03oA2gIR0CnlYfzasZHdX2UKGgGR0CPQAAAAAAAaAdN6ANoCEdAp5vtlXiiqXV9lChoBkdAj0AAAAAAAGgHTegDaAhHQKeh090Rvm51fZQoaAZHQI9AAAAAAABoB03oA2gIR0Cnp8Vv/BFedX2UKGgGR0CPQAAAAAAAaAdN6ANoCEdAp63/8hs673V9lChoBkdAj0AAAAAAAGgHTegDaAhHQKez+/NZ/1B1fZQoaAZHQI9AAAAAAABoB03oA2gIR0CnuiuPV/c4dX2UKGgGR0CPQAAAAAAAaAdN6ANoCEdAp8Caews5GXV9lChoBkdAj0AAAAAAAGgHTegDaAhHQKfG9P/rB0p1fZQoaAZHQI9AAAAAAABoB03oA2gIR0CnzQ23KB/adX2UKGgGR0CPQAAAAAAAaAdN6ANoCEdAp9MnrjYI0XV9lChoBkdAj0AAAAAAAGgHTegDaAhHQKfZknH/9511fZQoaAZHQI9AAAAAAABoB03oA2gIR0Cn39FwT/Q0dX2UKGgGR0CPQAAAAAAAaAdN6ANoCEdAp+XjlLeyiXV9lChoBkdAj0AAAAAAAGgHTegDaAhHQKfsDPHDJlt1fZQoaAZHQI9AAAAAAABoB03oA2gIR0Cn8m3IuGsWdX2UKGgGR0CPQAAAAAAAaAdN6ANoCEdAp/hld1MdtHV9lChoBkdAj0AAAAAAAGgHTegDaAhHQKf+hSiudPN1fZQoaAZHQI9AAAAAAABoB03oA2gIR0CoBP6+evpydX2UKGgGR0CPQAAAAAAAaAdN6ANoCEdAqAtI0Mw1znV9lChoBkdAj0AAAAAAAGgHTegDaAhHQKgRX+UhV2l1fZQoaAZHQI9AAAAAAABoB03oA2gIR0CoF9q5TZQIdX2UKGgGR0CPQAAAAAAAaAdN6ANoCEdAqB4oChew93V9lChoBkdAj0AAAAAAAGgHTegDaAhHQKgswpy6tkp1fZQoaAZHQI9AAAAAAABoB03oA2gIR0CoMzR8twrEdX2UKGgGR0CPQAAAAAAAaAdN6ANoCEdAqDnIblzU7XV9lChoBkdAj0AAAAAAAGgHTegDaAhHQKg/5SJj2Bd1fZQoaAZHQI9AAAAAAABoB03oA2gIR0CoRaoTGo73dX2UKGgGR0CPQAAAAAAAaAdN6ANoCEdAqEql1MdtEXV9lChoBkdAiMgAAAAAAGgHTRkDaAhHQKhOY3S8an91fZQoaAZHQGgAAAAAAABoB0vAaAhHQKhPXUDMeOp1fZQoaAZHQGagAAAAAABoB0u1aAhHQKhQSvGp++d1fZQoaAZHQHZgAAAAAABoB01mAWgIR0CoUjKUeMhpdX2UKGgGR0BkYAAAAAAAaAdLo2gIR0CoUwmR3eN2dX2UKGgGR0BhoAAAAAAAaAdLjWgIR0CoU7uxKQJYdX2UKGgGR0BiQAAAAAAAaAdLkmgIR0CoVIjHn2ZidX2UKGgGR0BgoAAAAAAAaAdLhWgIR0CoVTHgxagVdX2UKGgGR0BgIAAAAAAAaAdLgWgIR0CoVdho/RmcdX2UKGgGR0BfgAAAAAAAaAdLfmgIR0CoVolme18cdX2UKGgGR0BewAAAAAAAaAdLe2gIR0CoVzHSfDk3dX2UKGgGR0BhYAAAAAAAaAdLi2gIR0CoV+HqVyFPdX2UKGgGR0Bh4AAAAAAAaAdLj2gIR0CoWJ+f7JnydX2UKGgGR0BjIAAAAAAAaAdLmWgIR0CoWW6xgRbsdX2UKGgGR0BiYAAAAAAAaAdLk2gIR0CoWjjGtITXdX2UKGgGR0BkoAAAAAAAaAdLpWgIR0CoWxVQyhzvdX2UKGgGR0BlQAAAAAAAaAdLqmgIR0CoW/fYzzmPdX2UKGgGR0BlIAAAAAAAaAdLqWgIR0CoXO3Kji4sdX2UKGgGR0BnwAAAAAAAaAdLvmgIR0CoXeTeXRgJdX2UKGgGR0BrgAAAAAAAaAdL3GgIR0CoXvYlyBCldX2UKGgGR0Br4AAAAAAAaAdL32gIR0CoYA/3nIQwdX2UKGgGR0Bv4AAAAAAAaAdL/2gIR0CoYVrs0HhTdX2UKGgGR0BzoAAAAAAAaAdNOgFoCEdAqGL7ifg75nV9lChoBkdAcgAAAAAAAGgHTSABaAhHQKhkeZv1lGx1fZQoaAZHQHKAAAAAAABoB00oAWgIR0CoZgUpmVZ+dX2UKGgGR0BykAAAAAAAaAdNKQFoCEdAqGeahJyyU3V9lChoBkdAj0AAAAAAAGgHTegDaAhHQKhtCeq7yx11fZQoaAZHQI9AAAAAAABoB03oA2gIR0Coc2U3XI2gdX2UKGgGR0CPQAAAAAAAaAdN6ANoCEdAqHmXapPykXV9lChoBkdAj0AAAAAAAGgHTegDaAhHQKh/5isGPgh1fZQoaAZHQI9AAAAAAABoB03oA2gIR0CohfuOjqOcdX2UKGgGR0CPQAAAAAAAaAdN6ANoCEdAqIxZcPe54HV9lChoBkdAj0AAAAAAAGgHTegDaAhHQKiSumOU+s51fZQoaAZHQI9AAAAAAABoB03oA2gIR0ComLoC2c8UdX2UKGgGR0CPQAAAAAAAaAdN6ANoCEdAqJ5mK64DtHV9lChoBkdAj0AAAAAAAGgHTegDaAhHQKij+BUaQ3h1fZQoaAZHQI9AAAAAAABoB03oA2gIR0Coqgd2ovSMdX2UKGgGR0CPQAAAAAAAaAdN6ANoCEdAqLCt69kBjnV9lChoBkdAj0AAAAAAAGgHTegDaAhHQKi3W4J/oaF1ZS4="
82
+ },
83
+ "ep_success_buffer": {
84
+ ":type:": "<class 'collections.deque'>",
85
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
86
+ },
87
+ "_n_updates": 156250,
88
+ "n_steps": 32,
89
+ "gamma": 0.999,
90
+ "gae_lambda": 0.9,
91
+ "ent_coef": 1.37976e-07,
92
+ "vf_coef": 0.19816,
93
+ "max_grad_norm": 0.3,
94
+ "batch_size": 64,
95
+ "n_epochs": 5,
96
+ "clip_range": {
97
+ ":type:": "<class 'function'>",
98
+ ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL3FnYWxsb3VlZGVjL2Vudl9iZW5jaG1hcmsvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9xZ2FsbG91ZWRlYy9lbnZfYmVuY2htYXJrL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/ZmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
99
+ },
100
+ "clip_range_vf": null,
101
+ "normalize_advantage": true,
102
+ "target_kl": null
103
+ }
ppo-InvertedPendulum-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9b434b4d9997c813a6c2bb4abaa23f7f9983948bb2c3a902926b08e1bb65c84
3
+ size 83184
ppo-InvertedPendulum-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb4e28136e0eac8627cb241adc22c3c45b40451fc73451eb1602886dd427d649
3
+ size 40830
ppo-InvertedPendulum-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-InvertedPendulum-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
2
+ - Python: 3.9.12
3
+ - Stable-Baselines3: 1.8.0a6
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df58882c5399949535f9bd72f583da6d16f0bb7bc90ee46bd46b896e4ff492e2
3
+ size 50344
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1000.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-28T15:41:58.772197"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bddc4ac14fe6aa27358734820144fa5f29ee3d1e9dcf582ba279ebf92489c015
3
+ size 70402
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17222997749aaf3394a6f15bcaa3ae307f7960d406c6e211b51d6ee92dcd514a
3
+ size 4131