Quentin Gallouédec
commited on
Commit
•
75586a1
1
Parent(s):
1091e41
Initial commit
Browse files- .gitattributes +1 -0
- README.md +75 -0
- args.yml +83 -0
- config.yml +17 -0
- ddpg-FingerTurnEasyDMC-v0.zip +3 -0
- ddpg-FingerTurnEasyDMC-v0/_stable_baselines3_version +1 -0
- ddpg-FingerTurnEasyDMC-v0/actor.optimizer.pth +3 -0
- ddpg-FingerTurnEasyDMC-v0/critic.optimizer.pth +3 -0
- ddpg-FingerTurnEasyDMC-v0/data +137 -0
- ddpg-FingerTurnEasyDMC-v0/policy.pth +3 -0
- ddpg-FingerTurnEasyDMC-v0/pytorch_variables.pth +3 -0
- ddpg-FingerTurnEasyDMC-v0/system_info.txt +7 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- FingerTurnEasyDMC-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: DDPG
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: FingerTurnEasyDMC-v0
|
16 |
+
type: FingerTurnEasyDMC-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 617.50 +/- 445.30
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **DDPG** Agent playing **FingerTurnEasyDMC-v0**
|
25 |
+
This is a trained model of a **DDPG** agent playing **FingerTurnEasyDMC-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo ddpg --env FingerTurnEasyDMC-v0 -orga qgallouedec -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo ddpg --env FingerTurnEasyDMC-v0 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo ddpg --env FingerTurnEasyDMC-v0 -orga qgallouedec -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo ddpg --env FingerTurnEasyDMC-v0 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo ddpg --env FingerTurnEasyDMC-v0 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo ddpg --env FingerTurnEasyDMC-v0 -f logs/ -orga qgallouedec
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('batch_size', 64),
|
66 |
+
('gamma', 0.99),
|
67 |
+
('learning_rate', 0.0001),
|
68 |
+
('n_timesteps', 1000000.0),
|
69 |
+
('noise_std', 0.3),
|
70 |
+
('noise_type', 'ornstein-uhlenbeck'),
|
71 |
+
('policy', 'MlpPolicy'),
|
72 |
+
('policy_kwargs',
|
73 |
+
'dict(net_arch=dict(pi=[300, 200], qf=[400, 300]))'),
|
74 |
+
('normalize', False)])
|
75 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- ddpg
|
4 |
+
- - conf_file
|
5 |
+
- null
|
6 |
+
- - device
|
7 |
+
- auto
|
8 |
+
- - env
|
9 |
+
- FingerTurnEasyDMC-v0
|
10 |
+
- - env_kwargs
|
11 |
+
- null
|
12 |
+
- - eval_episodes
|
13 |
+
- 20
|
14 |
+
- - eval_freq
|
15 |
+
- 25000
|
16 |
+
- - gym_packages
|
17 |
+
- []
|
18 |
+
- - hyperparams
|
19 |
+
- null
|
20 |
+
- - log_folder
|
21 |
+
- logs
|
22 |
+
- - log_interval
|
23 |
+
- -1
|
24 |
+
- - max_total_trials
|
25 |
+
- null
|
26 |
+
- - n_eval_envs
|
27 |
+
- 5
|
28 |
+
- - n_evaluations
|
29 |
+
- null
|
30 |
+
- - n_jobs
|
31 |
+
- 1
|
32 |
+
- - n_startup_trials
|
33 |
+
- 10
|
34 |
+
- - n_timesteps
|
35 |
+
- -1
|
36 |
+
- - n_trials
|
37 |
+
- 500
|
38 |
+
- - no_optim_plots
|
39 |
+
- false
|
40 |
+
- - num_threads
|
41 |
+
- -1
|
42 |
+
- - optimization_log_path
|
43 |
+
- null
|
44 |
+
- - optimize_hyperparameters
|
45 |
+
- false
|
46 |
+
- - progress
|
47 |
+
- false
|
48 |
+
- - pruner
|
49 |
+
- median
|
50 |
+
- - sampler
|
51 |
+
- tpe
|
52 |
+
- - save_freq
|
53 |
+
- -1
|
54 |
+
- - save_replay_buffer
|
55 |
+
- false
|
56 |
+
- - seed
|
57 |
+
- 4182015211
|
58 |
+
- - storage
|
59 |
+
- null
|
60 |
+
- - study_name
|
61 |
+
- null
|
62 |
+
- - tensorboard_log
|
63 |
+
- runs/FingerTurnEasyDMC-v0__ddpg__4182015211__1673811018
|
64 |
+
- - track
|
65 |
+
- true
|
66 |
+
- - trained_agent
|
67 |
+
- ''
|
68 |
+
- - truncate_last_trajectory
|
69 |
+
- true
|
70 |
+
- - uuid
|
71 |
+
- false
|
72 |
+
- - vec_env
|
73 |
+
- dummy
|
74 |
+
- - verbose
|
75 |
+
- 1
|
76 |
+
- - wandb_entity
|
77 |
+
- qgallouedec
|
78 |
+
- - wandb_project_name
|
79 |
+
- dmc
|
80 |
+
- - wandb_tags
|
81 |
+
- []
|
82 |
+
- - yaml_file
|
83 |
+
- null
|
config.yml
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 64
|
4 |
+
- - gamma
|
5 |
+
- 0.99
|
6 |
+
- - learning_rate
|
7 |
+
- 0.0001
|
8 |
+
- - n_timesteps
|
9 |
+
- 1000000.0
|
10 |
+
- - noise_std
|
11 |
+
- 0.3
|
12 |
+
- - noise_type
|
13 |
+
- ornstein-uhlenbeck
|
14 |
+
- - policy
|
15 |
+
- MlpPolicy
|
16 |
+
- - policy_kwargs
|
17 |
+
- dict(net_arch=dict(pi=[300, 200], qf=[400, 300]))
|
ddpg-FingerTurnEasyDMC-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b68345cb7b84be127610527061d8768484513977c7988a5354e56c91cfc0cb4
|
3 |
+
size 3098965
|
ddpg-FingerTurnEasyDMC-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ddpg-FingerTurnEasyDMC-v0/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:084d49b8443b9e1243ffe230c48249480decc3a0014bda44f3756b2190e40c4b
|
3 |
+
size 520815
|
ddpg-FingerTurnEasyDMC-v0/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be5bf06d0d0d101ec1361b4e04c36b55766d4fb6842efc1aaefc153787900a10
|
3 |
+
size 1017455
|
ddpg-FingerTurnEasyDMC-v0/data
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.td3.policies",
|
6 |
+
"__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function TD3Policy.__init__ at 0x144698280>",
|
8 |
+
"_build": "<function TD3Policy._build at 0x144698310>",
|
9 |
+
"_get_constructor_parameters": "<function TD3Policy._get_constructor_parameters at 0x1446983a0>",
|
10 |
+
"make_actor": "<function TD3Policy.make_actor at 0x144698430>",
|
11 |
+
"make_critic": "<function TD3Policy.make_critic at 0x1446984c0>",
|
12 |
+
"forward": "<function TD3Policy.forward at 0x144698550>",
|
13 |
+
"_predict": "<function TD3Policy._predict at 0x1446985e0>",
|
14 |
+
"set_training_mode": "<function TD3Policy.set_training_mode at 0x144698670>",
|
15 |
+
"__abstractmethods__": "frozenset()",
|
16 |
+
"_abc_impl": "<_abc._abc_data object at 0x144692bc0>"
|
17 |
+
},
|
18 |
+
"verbose": 1,
|
19 |
+
"policy_kwargs": {
|
20 |
+
"net_arch": {
|
21 |
+
"pi": [
|
22 |
+
300,
|
23 |
+
200
|
24 |
+
],
|
25 |
+
"qf": [
|
26 |
+
400,
|
27 |
+
300
|
28 |
+
]
|
29 |
+
},
|
30 |
+
"n_critics": 1
|
31 |
+
},
|
32 |
+
"observation_space": {
|
33 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
34 |
+
":serialized:": "gAWVeAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLDIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWMAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLDIWUjAFDlHSUUpSMBGhpZ2iUaBMoljAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgLSwyFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWDAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLDIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYMAAAAAAAAAAAAAAAAAAAAAAAAAJRoIksMhZRoFnSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5RoLowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwHTVQxOTkzN5SMBXN0YXRllH2UKIwDa2V5lGgTKJbACQAAAAAAAAAAAIDFJ/2TfDAYocsCeUqUy/uh71/3I9OQveWVROterDkFqJtLIwTjmX5PWJjHdO9gz7G2Q34ixvp7Q1RaDoGotbaR9/9xqTWERnaBLSq3GISNxRj/leSXovhVTosJsxN6wQMWyIdMoy5JiiovNmgxwkA1ReU2ZWyUOd3F9WWzrE86uWEPL9tb+9PidUAFlhM+d4653jdCSjOOJoEWFy046Jm3ev/7pDUshD90PAojDPD7U4EsHydzB6GxbITClBagALnKPps5zuq2/uHHquaZHTPZCXD+zxJchfZvxm98+DeNnpEcFsfvv0yeVn/wL5tLL0lzrlhdQc5ugW3dMHdh0RG4JT7xigNHJHK3XZhjMmqcKepsNQikSPG0zri9QQWSrIOa3V4x3dCJ2tnYKuKyTbDd+h+6KOkjuJsEvi9qsDXDfz1ZYvzluk5GOE7sp7nyiDJ797S89H0nJAJVycor7Na4Zmw1+IkYdku7oTxXTknGn9Zr/srehWCHBy5L76KILxCOo60YUJxz6rV4aIecm0aADG7Z7NYSys6NECokoqc7UsCvgmAU0j5++2nYmmHuj9aoKd1PZXEh2kO3L9IkobAbHH2Xv0FxDopff5HiRlD6S/zF7rUkJT3dXGV4z2gi/oM6tk8vA90mH8cGf/Ifr3pFSNuX+vlI2Ypfn3M/eRc3gcyN58HwWGfZc+8O4WyU+ySkXijtgWUysgzxl3St49vpx5xDyP9BJbvjNs2YHUnqmaELITkB8shvWV7KBwADzxvx0j+3OnS+kfP0KdhFQ2gceeT5mbVrVsYX98Iay1yEdReVQroIYd83EOnxMl1q+7oFbijYb3RlVePaSojtdhXkyLObMp51MyYo+Y2LdaUkWWCboQhGftc2fQaK/TVG79Mpu40unKUnNguJXYsdpxJZ94GTWsGVBTxeb8tt5Nqoxwrd7R3kGBihM7iqRLbESOq+EfMNZZ7A7qT3BQfMxabf9H307wynjxPlebGE1Tf6ah6KY2Ar/0kcik3StJoViEvZuzcu9fL8M6RQCDETWtE2HU5TjcQLMA87iZy411UTvxh/zx9MDEEzt4RGJVmE5G7QkKoiE8XoyRhtl0RGbarsauDIM8M8epJWy76mm5l22yeEDIISieVx0hiJxzCPDVkcyDp/vH8bkdeBfrEHb42M6o7gw9bjMmQZx4IVUNJTvBTxK6Jvz/LetHVuOhukoylIA14qP1AHqv+xg0iCu8Nm6sUuPy/rGqLzNrmvxsYe/SsbLpilk9GklAzcBaQNYAlO+KhlVsqn5UB+kWZq8GWMWRH/3pfVskewGp7qpVI08JAxZBbv/HQG3WInU17aDwczDqg+ozp8MTl3RZ0ZC5W+7zKH+x961pK/Hazv+45ecZw2kUXGAE4cwr9hGEPBXk1uBaFRq2iBX2SPBHBDel88iiw9F28RlVNxKW981k+aPyBPeZkya3QS3eHEbhIw0s7xxsILceOdqg8z+Aqsc2kBMtDpfdFHjWgjukdsuaaV2CvpgCVc+0OKOtmXVBRAbTD6f8db/W2aKQjngnmuEvuj1+KsRqFSFvcNSDLAk43VNovNqkSkEMuQ6XjxD7r5Nn8Mu/Qdr6OczfgdjISaNwrhYbHWY9Al8icclEmUPslIViNtbIypN/gruKeLhAqm1XD+H48hs6hGH3VwpfyW//i4hmqxsN0lvQKOxWKCFmiwOp+avQ94VtSVfjfcSGytR4TjY/T+ZK0hHZSMJtakytKUQBw6hPrSyuyCSH61tBzigWWnQJ10+zrfb6VKRlo2KKnwPfXcePypFNPo3MLNsire8Cj9i6lLmM2Zdfnm3Y6T+PiqbJHEof9fB37MD0QgK/tKcc2tCWaQ+WebNGU1DQiS+tiwtZD2fEvesDYBXsY3/hb+a+xM7vtO/l44v4rjvfkTOByW1traRFDsNdj3bSZoLUmX8WhCtktC5g+/+r/hOmW9Fb6pY9xuy8xL64Sf6A0wvzcwevaXSUH+RLwrfcCLF+T9l7e2SvIBhqIMqN8i1P9S8SuBgSJtiOmNsTTuOP+KnpERFht2ivNDiZ9EUH2dBDX1MMCIxR8Stc+/RFfT7OQBB6AqJFC058JyuyD+ne+dobZd/388gim4E9yrww52uEGsHqN1eh60yFhxg1S1RA4FAdIPu2NNS8W5e2m3Gd9/XH9styfPrpTELWONrHqQEYAPL4e+3JO90im/h1nlizfPQZN9KXbQ6JbkQqdLki67Mvxmrbw53BVkoVhfgmAJnBHNWw5XunPd1xdjQqlyjEeDpnX4no+Wu4Pok3kRJzzGPDQaWi5BwRg0Kyi6CnBhAfoFxvNS//uQDlHpC/pyxA8f5Ao9qwrF4SpKgiDbFb+Hg0JXwZbaoVtajy8h92qez35K0KRB54cDrT7fLnScoqUlYSUu+fmfGSNdJeSDIZOvV2ofnWAosn9woJHASzCAjmlATuwB+JIbMbgJ4U+I4wu2H5EE+cyWUFg/9Sm2I+oJTDUep5jADTdWq9rcMMzrc19V/ZeBpcG6Uq7/VaORq0Gkl7mObxOSKHGoj9kuSUk1RSzvNanP4L/YVeaSYfABHS7TsnN4v/rZ1H0zgiC7KjQ5DVqdZFfvgYfU9ywKWPl8uBmfAv0vkTtz7f7RtxfLo7L3ihjc7R5cfUEmKrcVwmxybbSXRfMDH0g+pnf5NQMOLEhL/06o6kN8biv8epk4/7ydYPqe0UkQBesjH8At2ZAxEqRwTbe3oj6E2jZu+NedwRfqugVFrn8ivoH2H9VGoXj9wa3WCOyQVUChNnrGwIMzyYZ8vT3g+ns/H3kSdDjZCebUMph/bdJe1yHFSpvhGasQsvytkkC0sAA614uSmH/gGkgh+n71hSiH1zC5CRWUDG/f5P/g2iGoOrXeCCwrOKijoYtAt645DF7FQbJ4Iec+x9p46SGZWO1PKHfZaWto8ZZ1Qv1/o5lfkKdXxBvU87OFtHCm4qO+9C75Kd+bHXpLEbwQzFtpoW/6unI3Ea7LbElYUDU/MQFyIVFfOfk8p/eZBjDrQbKsTv8bw6lte5H7sIy407mQKA6/TxOqWJVwMJzh4eJrT+JVduJBcqk40FMw8FnCSXK2HKgUj37Q7Ntb8iQTOxgGP42bwmM6iPdV0bFYWnQexDML6kvrZxK2tM0vZnihacICW9ds7OS5sXBXvyV9CFojvHz5i+l73LbTH7dC8HNofiLpoRSKnSKGu48UjX3v50Way0tKTSPWswdwEHlku4Z6JqAItxYmy+5vfKYVvOoxEA55KWnOeuRevgTlVFDDttTbvC/+uPa10hrvBCGYEQKudcyQ5JRoCIwCdTSUiYiHlFKUKEsDaAxOTk5K/////0r/////SwB0lGJNcAKFlGgWdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
|
35 |
+
"dtype": "float32",
|
36 |
+
"_shape": [
|
37 |
+
12
|
38 |
+
],
|
39 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
40 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf]",
|
41 |
+
"bounded_below": "[False False False False False False False False False False False False]",
|
42 |
+
"bounded_above": "[False False False False False False False False False False False False]",
|
43 |
+
"_np_random": "RandomState(MT19937)"
|
44 |
+
},
|
45 |
+
"action_space": {
|
46 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
47 |
+
":serialized:": "gAWVFAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAAAAIC/AACAv5RoC0sChZSMAUOUdJRSlIwEaGlnaJRoEyiWCAAAAAAAAAAAAIA/AACAP5RoC0sChZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolgIAAAAAAAAAAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYCAAAAAAAAAAEBlGgiSwKFlGgWdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgujBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUaBMolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgIjAJ1NJSJiIeUUpQoSwNoDE5OTkr/////Sv////9LAHSUYk1wAoWUaBZ0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
|
48 |
+
"dtype": "float32",
|
49 |
+
"_shape": [
|
50 |
+
2
|
51 |
+
],
|
52 |
+
"low": "[-1. -1.]",
|
53 |
+
"high": "[1. 1.]",
|
54 |
+
"bounded_below": "[ True True]",
|
55 |
+
"bounded_above": "[ True True]",
|
56 |
+
"_np_random": "RandomState(MT19937)"
|
57 |
+
},
|
58 |
+
"n_envs": 1,
|
59 |
+
"num_timesteps": 1000000,
|
60 |
+
"_total_timesteps": 1000000,
|
61 |
+
"_num_timesteps_at_start": 0,
|
62 |
+
"seed": 0,
|
63 |
+
"action_noise": {
|
64 |
+
":type:": "<class 'stable_baselines3.common.noise.OrnsteinUhlenbeckActionNoise'>",
|
65 |
+
":serialized:": "gAWVbQEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMHE9ybnN0ZWluVWhsZW5iZWNrQWN0aW9uTm9pc2WUk5QpgZR9lCiMBl90aGV0YZRHP8MzMzMzMzOMA19tdZSMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwKFlIwBQ5R0lFKUjAZfc2lnbWGUaAkolhAAAAAAAAAAMzMzMzMz0z8zMzMzMzPTP5RoEEsChZRoFHSUUpSMA19kdJRHP4R64UeuFHuMDWluaXRpYWxfbm9pc2WUTowKbm9pc2VfcHJldpRoCSiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgQSwKFlGgUdJRSlHViLg==",
|
66 |
+
"_theta": 0.15,
|
67 |
+
"_mu": "[0. 0.]",
|
68 |
+
"_sigma": "[0.3 0.3]",
|
69 |
+
"_dt": 0.01,
|
70 |
+
"initial_noise": null,
|
71 |
+
"noise_prev": "[0. 0.]"
|
72 |
+
},
|
73 |
+
"start_time": 1673811021605715278,
|
74 |
+
"learning_rate": {
|
75 |
+
":type:": "<class 'function'>",
|
76 |
+
":serialized:": "gAWVCQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMay9ncGZzZHN3b3JrL3Byb2plY3RzL3JlY2gvdWxpL3VwZjgyc3AvZW52X2RtYy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxrL2dwZnNkc3dvcmsvcHJvamVjdHMvcmVjaC91bGkvdXBmODJzcC9lbnZfZG1jL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
77 |
+
},
|
78 |
+
"tensorboard_log": "runs/FingerTurnEasyDMC-v0__ddpg__4182015211__1673811018/FingerTurnEasyDMC-v0",
|
79 |
+
"lr_schedule": {
|
80 |
+
":type:": "<class 'function'>",
|
81 |
+
":serialized:": "gAWVCQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMay9ncGZzZHN3b3JrL3Byb2plY3RzL3JlY2gvdWxpL3VwZjgyc3AvZW52X2RtYy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxrL2dwZnNkc3dvcmsvcHJvamVjdHMvcmVjaC91bGkvdXBmODJzcC9lbnZfZG1jL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
82 |
+
},
|
83 |
+
"_last_obs": null,
|
84 |
+
"_last_episode_starts": {
|
85 |
+
":type:": "<class 'numpy.ndarray'>",
|
86 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
87 |
+
},
|
88 |
+
"_last_original_obs": {
|
89 |
+
":type:": "<class 'numpy.ndarray'>",
|
90 |
+
":serialized:": "gAWVpQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYwAAAAAAAAAN59+z97NSA/4DP8PQeeKj3mwhFAFamhvQAAAAAAAAAAAAAAALhT570YzYO9dlZBPpSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsMhpSMAUOUdJRSlC4="
|
91 |
+
},
|
92 |
+
"_episode_num": 1000,
|
93 |
+
"use_sde": false,
|
94 |
+
"sde_sample_freq": -1,
|
95 |
+
"_current_progress_remaining": 0.0,
|
96 |
+
"ep_info_buffer": {
|
97 |
+
":type:": "<class 'collections.deque'>",
|
98 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIvYAAAAAACMAWyUTegDjAF0lEdAvseuV0Lc9HV9lChoBkcAAAAAAAAAAGgHTegDaAhHQL7QF0L+glF1fZQoaAZHAAAAAAAAAABoB03oA2gIR0C+2I/0VafSdX2UKGgGRwAAAAAAAAAAaAdN6ANoCEdAvuENm4Ajp3V9lChoBkdAcdAAAAAAAGgHTegDaAhHQL7pZrd30PJ1fZQoaAZHAAAAAAAAAABoB03oA2gIR0C+8eRDLKV6dX2UKGgGR0CPQAAAAAAAaAdN6ANoCEdAvvpnN2TxG3V9lChoBkdAWcAAAAAAAGgHTegDaAhHQL8C5DbJwKl1fZQoaAZHAAAAAAAAAABoB03oA2gIR0C/C2Et29tedX2UKGgGR0CPQAAAAAAAaAdN6ANoCEdAvxPcZP2wmnV9lChoBkdAXcAAAAAAAGgHTegDaAhHQL8cXmzByjp1fZQoaAZHQI9AAAAAAABoB03oA2gIR0C/JNuZG8VYdX2UKGgGRwAAAAAAAAAAaAdN6ANoCEdAvy1Z4ptrK3V9lChoBkdATYAAAAAAAGgHTegDaAhHQL81y8ZDRdB1fZQoaAZHQCIAAAAAAABoB03oA2gIR0C/PkTmSyMUdX2UKGgGR0CM6AAAAAAAaAdN6ANoCEdAv0a/MdLg43V9lChoBkdAhjgAAAAAAGgHTegDaAhHQL9POkXk5p91fZQoaAZHQI0QAAAAAABoB03oA2gIR0C/V7tygf2cdX2UKGgGR0CKOAAAAAAAaAdN6ANoCEdAv2A28an753V9lChoBkdAj0AAAAAAAGgHTegDaAhHQL9onUxmCiB1fZQoaAZHQI7AAAAAAABoB03oA2gIR0C/cR+1F6RhdX2UKGgGR0BhIAAAAAAAaAdN6ANoCEdAv3mgzHjp93V9lChoBkcAAAAAAAAAAGgHTegDaAhHQL+CGhoduHh1fZQoaAZHQI74AAAAAABoB03oA2gIR0C/ipNtdiUgdX2UKGgGRwAAAAAAAAAAaAdN6ANoCEdAv5MR2vB7/nV9lChoBkdAdBAAAAAAAGgHTegDaAhHQL+hzzVc2R91fZQoaAZHQI6YAAAAAABoB03oA2gIR0C/qjStV7x/dX2UKGgGRwAAAAAAAAAAaAdN6ANoCEdAv7Kmd5IH1XV9lChoBkcAAAAAAAAAAGgHTegDaAhHQL+7ESrYGt91fZQoaAZHAAAAAAAAAABoB03oA2gIR0C/w37NGEwndX2UKGgGR0BmoAAAAAAAaAdN6ANoCEdAv8v74qPOp3V9lChoBkcAAAAAAAAAAGgHTegDaAhHQL/UZ3xWkrR1fZQoaAZHQAAAAAAAAABoB03oA2gIR0C/3OTlo11odX2UKGgGRwAAAAAAAAAAaAdN6ANoCEdAv+VhrrPdEnV9lChoBkdAjwgAAAAAAGgHTegDaAhHQL/t3be/Ho51fZQoaAZHAAAAAAAAAABoB03oA2gIR0C/9l1qnFYMdX2UKGgGRwAAAAAAAAAAaAdN6ANoCEdAv/7doL5RCXV9lChoBkcAAAAAAAAAAGgHTegDaAhHQMADrA9Net11fZQoaAZHAAAAAAAAAABoB03oA2gIR0DAB99v0h/zdX2UKGgGR0CKEAAAAAAAaAdN6ANoCEdAwAweTnJT2nV9lChoBkdAj0AAAAAAAGgHTegDaAhHQMAQW2TxG2F1fZQoaAZHAAAAAAAAAABoB03oA2gIR0DAFJipxWDIdX2UKGgGR0BAgAAAAAAAaAdN6ANoCEdAwBjXiay8jHV9lChoBkcAAAAAAAAAAGgHTegDaAhHQMAdE6UzKtB1fZQoaAZHAAAAAAAAAABoB03oA2gIR0DAIUkR8MNMdX2UKGgGR0COYAAAAAAAaAdN6ANoCEdAwCWHDiOvMnV9lChoBkcAAAAAAAAAAGgHTegDaAhHQMApxOMERrd1fZQoaAZHAAAAAAAAAABoB03oA2gIR0DALgICnxaxdX2UKGgGR0AoAAAAAAAAaAdN6ANoCEdAwDJABhhH9XV9lChoBkdAj0AAAAAAAGgHTegDaAhHQMA2fXTd+G51fZQoaAZHAAAAAAAAAABoB03oA2gIR0DAPeN5t3wDdX2UKGgGR0CCMAAAAAAAaAdN6ANoCEdAwEIXQZXMhXV9lChoBkcAAAAAAAAAAGgHTegDaAhHQMBGU02cawV1fZQoaAZHAAAAAAAAAABoB03oA2gIR0DASog4Ia99dX2UKGgGRwAAAAAAAAAAaAdN6ANoCEdAwE7HF2FFlXV9lChoBkdAEAAAAAAAAGgHTegDaAhHQMBTBvK2a2F1fZQoaAZHAAAAAAAAAABoB03oA2gIR0DAV0esmv4edX2UKGgGRwAAAAAAAAAAaAdN6ANoCEdAwFuCEcKgI3V9lChoBkdAjXAAAAAAAGgHTegDaAhHQMBfutlyzX11fZQoaAZHAAAAAAAAAABoB03oA2gIR0DAY/u6bvw3dX2UKGgGRwAAAAAAAAAAaAdN6ANoCEdAwGg8iRGMGXV9lChoBkdAjiAAAAAAAGgHTegDaAhHQMBselvZRKp1fZQoaAZHQIyoAAAAAABoB03oA2gIR0DAcLYs9SuRdX2UKGgGRwAAAAAAAAAAaAdN6ANoCEdAwHTcAzYVZnV9lChoBkcAAAAAAAAAAGgHTegDaAhHQMB5HHxSYPZ1fZQoaAZHQIa4AAAAAABoB03oA2gIR0DAfVx5Rjz7dX2UKGgGRwAAAAAAAAAAaAdN6ANoCEdAwIGa4rBj4HV9lChoBkcAAAAAAAAAAGgHTegDaAhHQMCF2fIS13N1fZQoaAZHAAAAAAAAAABoB03oA2gIR0DAihQ4S6DodX2UKGgGRwAAAAAAAAAAaAdN6ANoCEdAwI5NNliBoXV9lChoBkdAAAAAAAAAAGgHTegDaAhHQMCSfhAOav11fZQoaAZHQI9AAAAAAABoB03oA2gIR0DAlqnV7Qb/dX2UKGgGRwAAAAAAAAAAaAdN6ANoCEdAwJrVmvGIbnV9lChoBkcAAAAAAAAAAGgHTegDaAhHQMCfAFTefqZ1fZQoaAZHAAAAAAAAAABoB03oA2gIR0DAoylyT6i1dX2UKGgGR0CMCAAAAAAAaAdN6ANoCEdAwKp1KkEcKnV9lChoBkcAAAAAAAAAAGgHTegDaAhHQMCukmDUVi51fZQoaAZHAAAAAAAAAABoB03oA2gIR0DAsrN5OafBdX2UKGgGR0CB2AAAAAAAaAdN6ANoCEdAwLbGD2alUXV9lChoBkcAAAAAAAAAAGgHTegDaAhHQMC6zFf7aZh1fZQoaAZHQDUAAAAAAABoB03oA2gIR0DAvsyK3uuzdX2UKGgGR0B8oAAAAAAAaAdN6ANoCEdAwMLMfEn9enV9lChoBkcAAAAAAAAAAGgHTegDaAhHQMDGxxBeHBV1fZQoaAZHQI9AAAAAAABoB03oA2gIR0DAysH2Xb/PdX2UKGgGRwAAAAAAAAAAaAdN6ANoCEdAwM6ruyeI23V9lChoBkdAjTAAAAAAAGgHTegDaAhHQMDSqsGxD9h1fZQoaAZHQI9AAAAAAABoB03oA2gIR0DA1qY62fCidX2UKGgGRwAAAAAAAAAAaAdN6ANoCEdAwNqfHzYmLXV9lChoBkdAi7AAAAAAAGgHTegDaAhHQMDejfs3Q2N1fZQoaAZHQIioAAAAAABoB03oA2gIR0DA4n/u1F6SdX2UKGgGR0CPQAAAAAAAaAdN6ANoCEdAwOZf27nPmnV9lChoBkdAauAAAAAAAGgHTegDaAhHQMDqQN6ol2N1fZQoaAZHQIzQAAAAAABoB03oA2gIR0DA7iKgoPTYdX2UKGgGR0COSAAAAAAAaAdN6ANoCEdAwPICO09hZ3V9lChoBkdAiTAAAAAAAGgHTegDaAhHQMD14cuBczJ1fZQoaAZHAAAAAAAAAABoB03oA2gIR0DA+cQ2VE/jdX2UKGgGR0CPQAAAAAAAaAdN6ANoCEdAwP2kkwevIXV9lChoBkcAAAAAAAAAAGgHTegDaAhHQMEBelOwgT11fZQoaAZHAAAAAAAAAABoB03oA2gIR0DBBU8UoKD1dX2UKGgGRwAAAAAAAAAAaAdN6ANoCEdAwQkvx7RfGHVlLg=="
|
99 |
+
},
|
100 |
+
"ep_success_buffer": {
|
101 |
+
":type:": "<class 'collections.deque'>",
|
102 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
103 |
+
},
|
104 |
+
"_n_updates": 1000000,
|
105 |
+
"buffer_size": 1,
|
106 |
+
"batch_size": 64,
|
107 |
+
"learning_starts": 100,
|
108 |
+
"tau": 0.005,
|
109 |
+
"gamma": 0.99,
|
110 |
+
"gradient_steps": -1,
|
111 |
+
"optimize_memory_usage": false,
|
112 |
+
"replay_buffer_class": {
|
113 |
+
":type:": "<class 'abc.ABCMeta'>",
|
114 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
115 |
+
"__module__": "stable_baselines3.common.buffers",
|
116 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
117 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x144696dd0>",
|
118 |
+
"add": "<function ReplayBuffer.add at 0x144696e60>",
|
119 |
+
"sample": "<function ReplayBuffer.sample at 0x144696ef0>",
|
120 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x144696f80>",
|
121 |
+
"__abstractmethods__": "frozenset()",
|
122 |
+
"_abc_impl": "<_abc._abc_data object at 0x144632480>"
|
123 |
+
},
|
124 |
+
"replay_buffer_kwargs": {},
|
125 |
+
"train_freq": {
|
126 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
127 |
+
":serialized:": "gAWVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMB2VwaXNvZGWUhZRSlIaUgZQu"
|
128 |
+
},
|
129 |
+
"use_sde_at_warmup": false,
|
130 |
+
"policy_delay": 1,
|
131 |
+
"target_noise_clip": 0.0,
|
132 |
+
"target_policy_noise": 0.1,
|
133 |
+
"actor_batch_norm_stats": [],
|
134 |
+
"critic_batch_norm_stats": [],
|
135 |
+
"actor_batch_norm_stats_target": [],
|
136 |
+
"critic_batch_norm_stats_target": []
|
137 |
+
}
|
ddpg-FingerTurnEasyDMC-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:911ea58eb94f0c149664557d56bdfcbacd7147bccb024988f848a5dac0beacd6
|
3 |
+
size 1536477
|
ddpg-FingerTurnEasyDMC-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ddpg-FingerTurnEasyDMC-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: macOS-13.0.1-arm64-arm-64bit Darwin Kernel Version 22.1.0: Sun Oct 9 20:14:30 PDT 2022; root:xnu-8792.41.9~2/RELEASE_ARM64_T8103
|
2 |
+
- Python: 3.10.9
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.24.1
|
7 |
+
- Gym: 0.21.0
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a2f37021911cd1e05440baef74b7d514f991f1e450397e180f6468c022d83ad2
|
3 |
+
size 476994
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 617.5, "std_reward": 445.2952391391581, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-16T08:56:16.346033"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f160ec9c542b7cf6525ae6c53ec79215dc5089f77afdb8940a1c954ea7a8c44
|
3 |
+
size 36877
|