Quentin Gallouédec commited on
Commit
d4cab42
1 Parent(s): fd5117c

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - BallInCupDMC-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DDPG
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: BallInCupDMC-v0
16
+ type: BallInCupDMC-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 959.60 +/- 9.76
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **DDPG** Agent playing **BallInCupDMC-v0**
25
+ This is a trained model of a **DDPG** agent playing **BallInCupDMC-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo ddpg --env BallInCupDMC-v0 -orga qgallouedec -f logs/
47
+ python -m rl_zoo3.enjoy --algo ddpg --env BallInCupDMC-v0 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo ddpg --env BallInCupDMC-v0 -orga qgallouedec -f logs/
53
+ python -m rl_zoo3.enjoy --algo ddpg --env BallInCupDMC-v0 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo ddpg --env BallInCupDMC-v0 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo ddpg --env BallInCupDMC-v0 -f logs/ -orga qgallouedec
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 64),
66
+ ('gamma', 0.99),
67
+ ('learning_rate', 0.0001),
68
+ ('n_timesteps', 1000000.0),
69
+ ('noise_std', 0.3),
70
+ ('noise_type', 'ornstein-uhlenbeck'),
71
+ ('policy', 'MlpPolicy'),
72
+ ('policy_kwargs',
73
+ 'dict(net_arch=dict(pi=[300, 200], qf=[400, 300]))'),
74
+ ('normalize', False)])
75
+ ```
args.yml ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - ddpg
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - BallInCupDMC-v0
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 20
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - []
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - logs
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 5
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - -1
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 3795790406
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - runs/BallInCupDMC-v0__ddpg__3795790406__1673811015
64
+ - - track
65
+ - true
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - qgallouedec
78
+ - - wandb_project_name
79
+ - dmc
80
+ - - wandb_tags
81
+ - []
82
+ - - yaml_file
83
+ - null
config.yml ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 64
4
+ - - gamma
5
+ - 0.99
6
+ - - learning_rate
7
+ - 0.0001
8
+ - - n_timesteps
9
+ - 1000000.0
10
+ - - noise_std
11
+ - 0.3
12
+ - - noise_type
13
+ - ornstein-uhlenbeck
14
+ - - policy
15
+ - MlpPolicy
16
+ - - policy_kwargs
17
+ - dict(net_arch=dict(pi=[300, 200], qf=[400, 300]))
ddpg-BallInCupDMC-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88ee4735fdeb0ed3093fffc0242cf0af3487bdcef2dfe2137f672bfe1ccef7dc
3
+ size 3053998
ddpg-BallInCupDMC-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ddpg-BallInCupDMC-v0/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff0438ec44f208a77280cbd90b22e952b31c3a448ac946376b4d299779b50904
3
+ size 511215
ddpg-BallInCupDMC-v0/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91fb27f3d976c8c56a5a71f3f4e85a4c54e8edfd80fc27a0de96fc2e4a62cdf5
3
+ size 1004655
ddpg-BallInCupDMC-v0/data ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.td3.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function TD3Policy.__init__ at 0x12ad98280>",
8
+ "_build": "<function TD3Policy._build at 0x12ad98310>",
9
+ "_get_constructor_parameters": "<function TD3Policy._get_constructor_parameters at 0x12ad983a0>",
10
+ "make_actor": "<function TD3Policy.make_actor at 0x12ad98430>",
11
+ "make_critic": "<function TD3Policy.make_critic at 0x12ad984c0>",
12
+ "forward": "<function TD3Policy.forward at 0x12ad98550>",
13
+ "_predict": "<function TD3Policy._predict at 0x12ad985e0>",
14
+ "set_training_mode": "<function TD3Policy.set_training_mode at 0x12ad98670>",
15
+ "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc._abc_data object at 0x12ad81440>"
17
+ },
18
+ "verbose": 1,
19
+ "policy_kwargs": {
20
+ "net_arch": {
21
+ "pi": [
22
+ 300,
23
+ 200
24
+ ],
25
+ "qf": [
26
+ 400,
27
+ 300
28
+ ]
29
+ },
30
+ "n_critics": 1
31
+ },
32
+ "observation_space": {
33
+ ":type:": "<class 'gym.spaces.box.Box'>",
34
+ ":serialized:": "gAWVUAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgujBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUaBMolsAJAAAAAAAAAAAAgLu5zyz5rjqncZcvdAwxOPFcqKL18Neowz1ElQJmaWfaaYr0wodCGSvNDma/a5U6pxVrpV6M6UQkFVwMWtqn/ah0kmZ3aYtZ1KQJB5vBbODsW4P5etoPQepn8QXM1oAD7rCAQsPGHYBVTAJUzQjbaIF5/7G0Q+CF7WOgeENF1qf8cylEUYQMwyxP5kBp2nqk/p1YQEZ/TGYZDJr2hD5ECw/6pZnP/7T8OgR6hVnrCM3WcMe8wAouUro8fixEvQQkVOeTsL0B+AAiRGUTsbViX/m0fGGlPYajOYcWA1TF0nMTbRFt24rFz+KWzApxDRKcW0lp+K2054I9uyIK/WkKrHl/X/ocCOBZL2rTFFf1O9MXpVGazKpVQ6OeEEsJw0vavwBbHnIQ74JK1VeeuRQb5P3q+qeHICOjBGFNSmDQcWZYVSlXQ27NRATPtTN90CQrGSeQKjel8qqlyy/wZMiFDgt7nHE7tC8+Z191qxxQ5VUF78fBP72jpPkzkDZyOpUEbGLXv5t9Rxqsi0Dwgei04pWbosxX7W8Pjj7GXUpVfrQEOCSJtRee50whEYNTizjkfOljGjpOt4w/4bU+sFsVB9V4ALgoqw7gg601ic+tU1lt6WyI+w6so8zRdvyOuQeUvv5rQPPIpsAUHkmx5UFLs6m+PN8RIRCrZzLETaSSzfZfeXbL2U5QtmuEXfytTp0OjkM+mDqtvHi1LXMfWUilMloIwQ44jhPoMcIdKZIpGrscg8q4FM6slByh11XxDjPc6coy717pXZmnokL2wDk/Gp26btO2n6cyyACuIjkY1nM4adMVP9ru6tBD6ARr4lIYHrX2WyuyQp7OeTq59jLsRduGEV1siJZ+lZT1jktZykNIY9wvcFa8LlcHrC0Ejs0Zw/70OKvOGD2RB1vigJX6NbUH6Ad4xV0Z/SxfgCr4JnDeyGU/40tRFlGa/Q5L/TS3YmPFbumORAv6AogR9VGO//Un+bZGbcosreLQjBeemru4buAuwQ27RMhrmaRUUKE/OK48jDl7Od6ukNxt3+QXMx2LSGxprQlgElYkd7O2FQem/1WBp1lfltaifGON0ruZyLtXjmO4N9EubG/tzUEEvddJOz85HYH9ukcXgW0Cvd8L0/PJ7z+0wjafIMNCK6uhzit1ueryApKSCi/eS4szI13BoDIqdlAMYeFgPawClwiTqYaFwZGrqZ+8saWHm616vQD8TGYngmkugyTo7BhDBdVVI4UNUsF6FNikSLfqnTrEtIFJBHl36mWbXsVNgDGUgkXrtdjRfGJe0Yqr30xt154VK9wKdK8Wv2WIta/en0Z1cYi9xMgSwVnDmtS9toZMT1tR8YdfEcmzjtnuiuKNpRph5ub7dO4s3cV+3nk01WDB36PvBIYo563EOdpP0EB/xBfv5H7Oj8DJc6cW3hubeeeei3OooHagNVbBZ47gZKQF3xqeAwFejd2w7QL5gyCHEuELnVBiazy7OucvuitUWAa7TpUFVYrzABP5lGu78PVSpXdMuEUBh5r7zsbbQGgI1oyRVwLjUSj2ZRJat3WvTeSv04hEVIJQgRSjK6I8VztWWzlr20hofsGLFVLrtYH33qAFTlX6zRNeYPZsLMAsZOIs992/tmjgky2ouSQSH4GnOc/8elHl613k3aXVxnczLR38CnvYvGi6sx5TejJ1eCST9zmCg/yXgTBVcFFM2mIXxM1h8hFDlFBQRYtBwPNzbyTQkF2tuKbbf53oSpB4SHAv683oQ3RO2iVLH/hpllJHmr5pIlD1ZhsskwTa2ZaoYGyr+npkUtbU/U6+XuAyQqL3wcPG5GePNcT4mMqaXuZcEBEwQ3lg4ge+YeleUncWY2dd2WWKB2OoG53P2jBw/u/lnHLl2hRY0op1Lj/cKtGt85GXqYI5hJZfwBQunG+RE3ErfqjUrkCCIJEXacP1jzD3A2T3Yi3j8ndZ0v96OGLdo1imbZN7Kuf34H5cLfdnE4lfnPgF92bTOg/99EvrWAQMyt+4UFBH6i2kwP7wGovV5N/pfR2puC7GvEWHGrKZJVh+X56I6qNbd/+baQ0RFCFhUH1m4ma2cPztNkyJy+dLxpy5sL232j3GrOUu6enT1v6Lxj24aDvLVWIG/t8fsCXhAazr1hiZTptcm7XL4TqpqFNBVOsn0wL+JENJjujBFEQb52GYEgfo9POLsLMqM5D4QpWCXd5hhFRvnoK9ejcSsmFVVAFfKHZS5qcNr37U1l/T/zRsTOK2lPUT/lYVy/cwHcDpsjV0EXb5x80WT1c9UcCvSSAWnEWxWpCrr0cxHGYBjLhmVzaXKxs/FIkKbi/SYnmzVl+utVn56jxxIurqndEBDNmI5DgIgKkKRn3nrcIQJIHFHhrgZcMyJInmRZ+iqKdMheIVLXfDg49HZI6GcMv5cM+K5Mdz5E/aeXlaW7AiUvW4wiXM1oZXbq5b6Ip/+WkUn4syK4G6axpATUnYo1pPapeWfU1BuTMaPjhH1wp8CTmz12u6qwqPKR1/vgC1eYG5TR9Fwfgor8LjunTy9GlbZaSusPGOo+grIz6McrwXCAOo1GgSscH96Izvz4HgHUtE1xThPGOJuh+NUDfDDuhq32gQr+nwHhTWnHDiQqBcNOXEamv11Xp5PoxjFLzKMUtiMCiRwSLu4yZ4GRGk9BXAo0fd2bykOC9EGkpxjdAs1x+f2aAGI7T2wgIcEu+MJ9AzA68R6MqmgddXGl+dxk3HTF7vXUhW2kPdQ4ZzYY6VZCWRb9awUd5ZXiWABqRpB+n/+Kdny9a9urMo02kF/HxzaPY2RMqnuNG1c0qXtL9Qv7KNGEH6aHMPVkL2wT95MhxrBnLkEdfEOcMDddxXPxHZUeoWaWQLPK1wjbwvKxJGWJCvflyBNLA3RY5iT0svi+YQ3e7oAGKbWExfrZzXNTHu1XpSr6Zfqvk1niriBUKAtgFiw5jDI1y62CyZhzqge6xh6RPzkDGrnAnHpaT2fyHvlJiT9o3LuRD0bAdUjYUVA97NaKWuiAk4oTRpUl3egoN3JmUQ/bFdOV1wj5gB/BEZVr4ugQH4ND0GuGnfsbIT9HzCnKrG+1uvZ2IlM2QDqfGD3gx6Mir2rh+OxVGMQoU/fMkdCxhJabK7xnFmgtB0B//YF/2AmmQSNs9stLEIbUXTLCFQhuHN47dOFj3EcA03Z6+lM+Hv/3wuEO32tLGOEqC1tooBor0tQjESimjgwSDDvn31g3ld2VCyQXQzotdkVaLbXhruw6bNg6714lvMbcfHYYop8ncDYUIX3WcRsVVS1zVr8fLKJvjoGn6cfXDqbU+1P5pCylYclGgIjAJ1NJSJiIeUUpQoSwNoDE5OTkr/////Sv////9LAHSUYk1wAoWUaBZ0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
35
+ "dtype": "float32",
36
+ "_shape": [
37
+ 8
38
+ ],
39
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
40
+ "high": "[inf inf inf inf inf inf inf inf]",
41
+ "bounded_below": "[False False False False False False False False]",
42
+ "bounded_above": "[False False False False False False False False]",
43
+ "_np_random": "RandomState(MT19937)"
44
+ },
45
+ "action_space": {
46
+ ":type:": "<class 'gym.spaces.box.Box'>",
47
+ ":serialized:": "gAWVFAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAAAAIC/AACAv5RoC0sChZSMAUOUdJRSlIwEaGlnaJRoEyiWCAAAAAAAAAAAAIA/AACAP5RoC0sChZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolgIAAAAAAAAAAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYCAAAAAAAAAAEBlGgiSwKFlGgWdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgujBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUaBMolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgIjAJ1NJSJiIeUUpQoSwNoDE5OTkr/////Sv////9LAHSUYk1wAoWUaBZ0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
48
+ "dtype": "float32",
49
+ "_shape": [
50
+ 2
51
+ ],
52
+ "low": "[-1. -1.]",
53
+ "high": "[1. 1.]",
54
+ "bounded_below": "[ True True]",
55
+ "bounded_above": "[ True True]",
56
+ "_np_random": "RandomState(MT19937)"
57
+ },
58
+ "n_envs": 1,
59
+ "num_timesteps": 1000000,
60
+ "_total_timesteps": 1000000,
61
+ "_num_timesteps_at_start": 0,
62
+ "seed": 0,
63
+ "action_noise": {
64
+ ":type:": "<class 'stable_baselines3.common.noise.OrnsteinUhlenbeckActionNoise'>",
65
+ ":serialized:": "gAWVbQEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMHE9ybnN0ZWluVWhsZW5iZWNrQWN0aW9uTm9pc2WUk5QpgZR9lCiMBl90aGV0YZRHP8MzMzMzMzOMA19tdZSMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwKFlIwBQ5R0lFKUjAZfc2lnbWGUaAkolhAAAAAAAAAAMzMzMzMz0z8zMzMzMzPTP5RoEEsChZRoFHSUUpSMA19kdJRHP4R64UeuFHuMDWluaXRpYWxfbm9pc2WUTowKbm9pc2VfcHJldpRoCSiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgQSwKFlGgUdJRSlHViLg==",
66
+ "_theta": 0.15,
67
+ "_mu": "[0. 0.]",
68
+ "_sigma": "[0.3 0.3]",
69
+ "_dt": 0.01,
70
+ "initial_noise": null,
71
+ "noise_prev": "[0. 0.]"
72
+ },
73
+ "start_time": 1673811019278273924,
74
+ "learning_rate": {
75
+ ":type:": "<class 'function'>",
76
+ ":serialized:": "gAWVCQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMay9ncGZzZHN3b3JrL3Byb2plY3RzL3JlY2gvdWxpL3VwZjgyc3AvZW52X2RtYy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxrL2dwZnNkc3dvcmsvcHJvamVjdHMvcmVjaC91bGkvdXBmODJzcC9lbnZfZG1jL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
77
+ },
78
+ "tensorboard_log": "runs/BallInCupDMC-v0__ddpg__3795790406__1673811015/BallInCupDMC-v0",
79
+ "lr_schedule": {
80
+ ":type:": "<class 'function'>",
81
+ ":serialized:": "gAWVCQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMay9ncGZzZHN3b3JrL3Byb2plY3RzL3JlY2gvdWxpL3VwZjgyc3AvZW52X2RtYy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxrL2dwZnNkc3dvcmsvcHJvamVjdHMvcmVjaC91bGkvdXBmODJzcC9lbnZfZG1jL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
82
+ },
83
+ "_last_obs": null,
84
+ "_last_episode_starts": {
85
+ ":type:": "<class 'numpy.ndarray'>",
86
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
87
+ },
88
+ "_last_original_obs": {
89
+ ":type:": "<class 'numpy.ndarray'>",
90
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgL6YzKC+lAt3vh58lzzAPpOmtGaftoU2k6bSqZ62lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
91
+ },
92
+ "_episode_num": 1000,
93
+ "use_sde": false,
94
+ "sde_sample_freq": -1,
95
+ "_current_progress_remaining": 0.0,
96
+ "ep_info_buffer": {
97
+ ":type:": "<class 'collections.deque'>",
98
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI3oAAAAAACMAWyUTegDjAF0lEdAxOKEXUpd8nV9lChoBkdAjegAAAAAAGgHTegDaAhHQMToNPv0AcV1fZQoaAZHQI1gAAAAAABoB03oA2gIR0DE7eJfYzzmdX2UKGgGR0CN8AAAAAAAaAdN6ANoCEdAxPOQvalDW3V9lChoBkdAjbAAAAAAAGgHTegDaAhHQMT5SM54nnd1fZQoaAZHQI2gAAAAAABoB03oA2gIR0DE/vBo9LYgdX2UKGgGR0CN0AAAAAAAaAdN6ANoCEdAxQSk4I8hcXV9lChoBkdAjuAAAAAAAGgHTegDaAhHQMUKWTpX6qN1fZQoaAZHQI24AAAAAABoB03oA2gIR0DFEAyJ40MxdX2UKGgGR0COyAAAAAAAaAdN6ANoCEdAxRXUKbayr3V9lChoBkdAjsgAAAAAAGgHTegDaAhHQMUbiZBLPD51fZQoaAZHQI3IAAAAAABoB03oA2gIR0DFIUXhsImgdX2UKGgGR0CNwAAAAAAAaAdN6ANoCEdAxSbvdFfAsXV9lChoBkdAjbgAAAAAAGgHTegDaAhHQMUsmtrbg0l1fZQoaAZHQI3gAAAAAABoB03oA2gIR0DFMkcvugHvdX2UKGgGR0CNwAAAAAAAaAdN6ANoCEdAxTf8TbFju3V9lChoBkdAjYAAAAAAAGgHTegDaAhHQMU9r5aNdZ91fZQoaAZHQI2wAAAAAABoB03oA2gIR0DFQ1zAP/aQdX2UKGgGR0CN2AAAAAAAaAdN6ANoCEdAxUko5wwTNHV9lChoBkdAjtgAAAAAAGgHTegDaAhHQMVO7i/O+qR1fZQoaAZHQI7QAAAAAABoB03oA2gIR0DFVKz8JlasdX2UKGgGR0CL4AAAAAAAaAdN6ANoCEdAxVqD8IiTuHV9lChoBkdAjtAAAAAAAGgHTegDaAhHQMVgSHjIaLp1fZQoaAZHQI24AAAAAABoB03oA2gIR0DFZhhwqAjIdX2UKGgGR0COyAAAAAAAaAdN6ANoCEdAxWvaKx9oe3V9lChoBkdAjagAAAAAAGgHTegDaAhHQMV1SGQKa5R1fZQoaAZHQI9AAAAAAABoB03oA2gIR0DFexIv114gdX2UKGgGR0CNsAAAAAAAaAdN6ANoCEdAxYDboLXtjXV9lChoBkdAjhAAAAAAAGgHTegDaAhHQMWGoltj0+V1fZQoaAZHQI7oAAAAAABoB03oA2gIR0DFjGxbUwztdX2UKGgGR0CN4AAAAAAAaAdN6ANoCEdAxZInQv6CUXV9lChoBkdAjfgAAAAAAGgHTegDaAhHQMWX72sJY1Z1fZQoaAZHQI3AAAAAAABoB03oA2gIR0DFnao6QvHtdX2UKGgGR0COyAAAAAAAaAdN6ANoCEdAxaNnS5RTCXV9lChoBkdAjeAAAAAAAGgHTegDaAhHQMWpFBmf5DZ1fZQoaAZHQI4AAAAAAABoB03oA2gIR0DFrsBRoAXEdX2UKGgGR0CNyAAAAAAAaAdN6ANoCEdAxbR5z+3pfXV9lChoBkdAjtAAAAAAAGgHTegDaAhHQMW6SooNNJx1fZQoaAZHQI7oAAAAAABoB03oA2gIR0DFwAFHQQcxdX2UKGgGR0CO2AAAAAAAaAdN6ANoCEdAxcW5kZrHl3V9lChoBkdAjzgAAAAAAGgHTegDaAhHQMXLXx9oexR1fZQoaAZHQI7QAAAAAABoB03oA2gIR0DF0REGC7K8dX2UKGgGR0CN2AAAAAAAaAdN6ANoCEdAxdbEN3GGVXV9lChoBkdAi/AAAAAAAGgHTegDaAhHQMXceVMEidJ1fZQoaAZHQI3oAAAAAABoB03oA2gIR0DF4izvXsgMdX2UKGgGR0CN2AAAAAAAaAdN6ANoCEdAxefgUg0TDnV9lChoBkdAj0AAAAAAAGgHTegDaAhHQMXtqDUVi4J1fZQoaAZHQIxgAAAAAABoB03oA2gIR0DF8120kWykdX2UKGgGR0CN8AAAAAAAaAdN6ANoCEdAxfkRKOktVnV9lChoBkdAjuAAAAAAAGgHTegDaAhHQMX+yT1bqyJ1fZQoaAZHQI7IAAAAAABoB03oA2gIR0DGCCPqxC6ZdX2UKGgGR0CKMAAAAAAAaAdN6ANoCEdAxg3aGwA2h3V9lChoBkdAjdAAAAAAAGgHTegDaAhHQMYTj6X8fmt1fZQoaAZHQI9AAAAAAABoB03oA2gIR0DGGTtf3N9qdX2UKGgGR0CN2AAAAAAAaAdN6ANoCEdAxh7yjJuEVXV9lChoBkdAjdgAAAAAAGgHTegDaAhHQMYkoMmv4dp1fZQoaAZHQI7gAAAAAABoB03oA2gIR0DGKk+XmeUZdX2UKGgGR0COEAAAAAAAaAdN6ANoCEdAxi/wQyRB/3V9lChoBkdAjegAAAAAAGgHTegDaAhHQMY1m/Chvit1fZQoaAZHQI3wAAAAAABoB03oA2gIR0DGO2Iuyu6mdX2UKGgGR0CO6AAAAAAAaAdN6ANoCEdAxkEhesxO+XV9lChoBkdAjeAAAAAAAGgHTegDaAhHQMZG3+NLlFN1fZQoaAZHQI7gAAAAAABoB03oA2gIR0DGTK+XgLqmdX2UKGgGR0CN8AAAAAAAaAdN6ANoCEdAxlJTfZVXFXV9lChoBkdAjggAAAAAAGgHTegDaAhHQMZYGhStNi91fZQoaAZHQI3wAAAAAABoB03oA2gIR0DGXcXoxHoYdX2UKGgGR0CO2AAAAAAAaAdN6ANoCEdAxmOTXlKbrnV9lChoBkdAjegAAAAAAGgHTegDaAhHQMZpPO6unuR1fZQoaAZHQI3IAAAAAABoB03oA2gIR0DGbv+St/4JdX2UKGgGR0COyAAAAAAAaAdN6ANoCEdAxnTDGlQ/HHV9lChoBkdAjzgAAAAAAGgHTegDaAhHQMZ6iDmjj711fZQoaAZHQI7YAAAAAABoB03oA2gIR0DGgFOJcgQpdX2UKGgGR0CO2AAAAAAAaAdN6ANoCEdAxoYYp0fYBnV9lChoBkdAjfAAAAAAAGgHTegDaAhHQMaL8xP420l1fZQoaAZHQI3gAAAAAABoB03oA2gIR0DGkbuhoM8YdX2UKGgGR0CO0AAAAAAAaAdN6ANoCEdAxpr/W912aHV9lChoBkdAjRAAAAAAAGgHTegDaAhHQMagzMF+uvF1fZQoaAZHQI7gAAAAAABoB03oA2gIR0DGpoSN6w+udX2UKGgGR0CNcAAAAAAAaAdN6ANoCEdAxqxH9YOlPHV9lChoBkdAjagAAAAAAGgHTegDaAhHQMayDoOH3111fZQoaAZHQI3YAAAAAABoB03oA2gIR0DGt8bGaQV9dX2UKGgGR0CN+AAAAAAAaAdN6ANoCEdAxr1268QI2XV9lChoBkdAjsAAAAAAAGgHTegDaAhHQMbDMu7xusN1fZQoaAZHQI9AAAAAAABoB03oA2gIR0DGyNdeyAx0dX2UKGgGR0CN6AAAAAAAaAdN6ANoCEdAxs6M/ag263V9lChoBkdAjegAAAAAAGgHTegDaAhHQMbUKy7Xg+B1fZQoaAZHQI3gAAAAAABoB03oA2gIR0DG2cjeQ+2WdX2UKGgGR0CNyAAAAAAAaAdN6ANoCEdAxt9i+QlrunV9lChoBkdAjegAAAAAAGgHTegDaAhHQMblERc3VCp1fZQoaAZHQI7YAAAAAABoB03oA2gIR0DG6q5a/yoXdX2UKGgGR0CNqAAAAAAAaAdN6ANoCEdAxvBDD4xk/nV9lChoBkdAjsgAAAAAAGgHTegDaAhHQMb13IqTbFl1fZQoaAZHQI34AAAAAABoB03oA2gIR0DG+3xb2USqdX2UKGgGR0CN+AAAAAAAaAdN6ANoCEdAxwEUlWOp9HV9lChoBkdAjdAAAAAAAGgHTegDaAhHQMcGpQUg0TF1fZQoaAZHQI3wAAAAAABoB03oA2gIR0DHDEAJPZZkdX2UKGgGR0CO0AAAAAAAaAdN6ANoCEdAxxHcd92HL3V9lChoBkdAjsgAAAAAAGgHTegDaAhHQMcXen3UQTV1fZQoaAZHQI4AAAAAAABoB03oA2gIR0DHHRKxC6YmdX2UKGgGR0CNKAAAAAAAaAdN6ANoCEdAxyKzADaGpXVlLg=="
99
+ },
100
+ "ep_success_buffer": {
101
+ ":type:": "<class 'collections.deque'>",
102
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
103
+ },
104
+ "_n_updates": 1000000,
105
+ "buffer_size": 1,
106
+ "batch_size": 64,
107
+ "learning_starts": 100,
108
+ "tau": 0.005,
109
+ "gamma": 0.99,
110
+ "gradient_steps": -1,
111
+ "optimize_memory_usage": false,
112
+ "replay_buffer_class": {
113
+ ":type:": "<class 'abc.ABCMeta'>",
114
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
115
+ "__module__": "stable_baselines3.common.buffers",
116
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
117
+ "__init__": "<function ReplayBuffer.__init__ at 0x12ad96dd0>",
118
+ "add": "<function ReplayBuffer.add at 0x12ad96e60>",
119
+ "sample": "<function ReplayBuffer.sample at 0x12ad96ef0>",
120
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x12ad96f80>",
121
+ "__abstractmethods__": "frozenset()",
122
+ "_abc_impl": "<_abc._abc_data object at 0x12ad368c0>"
123
+ },
124
+ "replay_buffer_kwargs": {},
125
+ "train_freq": {
126
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
127
+ ":serialized:": "gAWVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMB2VwaXNvZGWUhZRSlIaUgZQu"
128
+ },
129
+ "use_sde_at_warmup": false,
130
+ "policy_delay": 1,
131
+ "target_noise_clip": 0.0,
132
+ "target_policy_noise": 0.1,
133
+ "actor_batch_norm_stats": [],
134
+ "critic_batch_norm_stats": [],
135
+ "actor_batch_norm_stats_target": [],
136
+ "critic_batch_norm_stats_target": []
137
+ }
ddpg-BallInCupDMC-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b40627b158070a9eae747a727a29b19d1665194fad3bfde4caba013f85268fba
3
+ size 1514077
ddpg-BallInCupDMC-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ddpg-BallInCupDMC-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: macOS-13.0.1-arm64-arm-64bit Darwin Kernel Version 22.1.0: Sun Oct 9 20:14:30 PDT 2022; root:xnu-8792.41.9~2/RELEASE_ARM64_T8103
2
+ - Python: 3.10.9
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1
5
+ - GPU Enabled: False
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc7f1fbc8454127273289fedaeadf5ef86eac0277554d0b72909a43d06f865f8
3
+ size 281012
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 959.6, "std_reward": 9.759098319004682, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-16T08:49:40.791572"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b3a6586dbedecc3030578100a2f6da96e7b0dea700bf6bb90a13b1e5f00c05d
3
+ size 37903