Quentin Gallouédec commited on
Commit
fe964f1
·
1 Parent(s): 44f27af

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - MountainCarContinuous-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: MountainCarContinuous-v0
16
+ type: MountainCarContinuous-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 90.94 +/- 0.16
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **MountainCarContinuous-v0**
25
+ This is a trained model of a **A2C** agent playing **MountainCarContinuous-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo a2c --env MountainCarContinuous-v0 -orga qgallouedec -f logs/
47
+ python -m rl_zoo3.enjoy --algo a2c --env MountainCarContinuous-v0 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo a2c --env MountainCarContinuous-v0 -orga qgallouedec -f logs/
53
+ python -m rl_zoo3.enjoy --algo a2c --env MountainCarContinuous-v0 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo a2c --env MountainCarContinuous-v0 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo a2c --env MountainCarContinuous-v0 -f logs/ -orga qgallouedec
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('ent_coef', 0.0),
66
+ ('n_envs', 4),
67
+ ('n_steps', 100),
68
+ ('n_timesteps', 100000.0),
69
+ ('normalize', True),
70
+ ('policy', 'MlpPolicy'),
71
+ ('policy_kwargs', 'dict(log_std_init=0.0, ortho_init=False)'),
72
+ ('sde_sample_freq', 16),
73
+ ('use_sde', True),
74
+ ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
75
+ ```
a2c-MountainCarContinuous-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4850196f02af40636ab42aa9b52b8886b45f453edbc34eef291a9713eeb10798
3
+ size 96529
a2c-MountainCarContinuous-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0a6
a2c-MountainCarContinuous-v0/data ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc3c5e90d30>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc3c5e90dc0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc3c5e90e50>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc3c5e90ee0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fc3c5e90f70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fc3c5e91040>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc3c5e910d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc3c5e91160>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fc3c5e911f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc3c5e91280>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc3c5e91310>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc3c5e913a0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fc3c5e92280>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVpwAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRHAAAAAAAAAACMCm9ydGhvX2luaXSUiYwPb3B0aW1pemVyX2NsYXNzlIwTdG9yY2gub3B0aW0ucm1zcHJvcJSMB1JNU3Byb3CUk5SMEG9wdGltaXplcl9rd2FyZ3OUfZQojAVhbHBoYZRHP++uFHrhR66MA2Vwc5RHPuT4tYjjaPGMDHdlaWdodF9kZWNheZRLAHV1Lg==",
26
+ "log_std_init": 0.0,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAACamZm/KVyPvZRoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAACamRk/KVyPPZRoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 2
41
+ ],
42
+ "low": "[-1.2 -0.07]",
43
+ "high": "[0.6 0.07]",
44
+ "bounded_below": "[ True True]",
45
+ "bounded_above": "[ True True]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVBAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAIC/lGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAgD+UaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 1
54
+ ],
55
+ "low": "[-1.]",
56
+ "high": "[1.]",
57
+ "bounded_below": "[ True]",
58
+ "bounded_above": "[ True]",
59
+ "_np_random": "RandomState(MT19937)"
60
+ },
61
+ "n_envs": 1,
62
+ "num_timesteps": 100000,
63
+ "_total_timesteps": 100000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": 0,
66
+ "action_noise": null,
67
+ "start_time": 1671036448900700879,
68
+ "learning_rate": 0.0007,
69
+ "tensorboard_log": "runs/MountainCarContinuous-v0__a2c__3455073444__1671036446/MountainCarContinuous-v0",
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": null,
75
+ "_last_episode_starts": {
76
+ ":type:": "<class 'numpy.ndarray'>",
77
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
78
+ },
79
+ "_last_original_obs": {
80
+ ":type:": "<class 'numpy.ndarray'>",
81
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAPbxFL8AAAAA2DTWvgAAAABWI+a+AAAAABqNBL8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwKGlIwBQ5R0lFKULg=="
82
+ },
83
+ "_episode_num": 0,
84
+ "use_sde": true,
85
+ "sde_sample_freq": 16,
86
+ "_current_progress_remaining": 0.0,
87
+ "ep_info_buffer": {
88
+ ":type:": "<class 'collections.deque'>",
89
+ ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFauuTzND+mMAWyUS16MAXSUR0A1tYDklu3udX2UKGgGR0BWqlvMr3CbaAdLX2gIR0A1tyrPt2LYdX2UKGgGR0BUh6vFFUhnaAdLzGgIR0A1ulQMx46fdX2UKGgGR0BWx/SH/LkkaAdLXGgIR0A1v9CNS619dX2UKGgGR0BXTevdM0xeaAdLTWgIR0A1xpqASWZ7dX2UKGgGR0BXVRC2MKkVaAdLSmgIR0A1y/QSi/O/dX2UKGgGR0BWpx3eN1hcaAdLX2gIR0A1zXUH6dlNdX2UKGgGR0BW0HwgDA8CaAdLWWgIR0A123+uNgjRdX2UKGgGR0BV/5LIxQBQaAdLfGgIR0A13HXEqDsddX2UKGgGR0BWc8d1dPcjaAdLaGgIR0A15acI7eVLdX2UKGgGR0BWq4AXEZR9aAdLbmgIR0A15YYBNmDldX2UKGgGR0BWd0puuRs/aAdLaWgIR0A19N7SiM5wdX2UKGgGR0BWuXUpd8iOaAdLXGgIR0A1+zySV4X5dX2UKGgGR0BWoD7Q9ic5aAdLamgIR0A1/lF+d9UkdX2UKGgGR0BUqecMEzO5aAdLtmgIR0A2BnzQNTcZdX2UKGgGR0BXqP1+RYA9aAdLRmgIR0A2C0JWvKU3dX2UKGgGR0BWp1sguAZsaAdLX2gIR0A2C5zYEnstdX2UKGgGR0BW9LMHKOktaAdLU2gIR0A2EmeDnNgSdX2UKGgGR0BW4+PeYUnHaAdLVmgIR0A2Gy9mHxjKdX2UKGgGR0BWwvnGKhtcaAdLXGgIR0A2IUONHYpVdX2UKGgGR0BWHCOinHeaaAdLjWgIR0A2LlWwNb1RdX2UKGgGR0BVlGUr08NhaAdLn2gIR0A2N/7zkIX1dX2UKGgGR0BWYmjbi6xxaAdLcGgIR0A2PFTNt65YdX2UKGgGR0BWwMjmjj7zaAdLW2gIR0A2RGEf1YhddX2UKGgGR0BWySN83MpxaAdLWWgIR0A2UcBltj0+dX2UKGgGR0BUOz3VTaTPaAdL5WgIR0A2Ughr30wrdX2UKGgGR0BVymNm16VuaAdLiWgIR0A2WcU/OdGzdX2UKGgGR0BW6GCZnctYaAdLaWgIR0A2XYJE6T4ddX2UKGgGR0BWbwuZkTYeaAdLb2gIR0A2bEzwc5sCdX2UKGgGR0BWjKBVdX1baAdLY2gIR0A2cTKDCgscdX2UKGgGR0BWpRD1GsmwaAdLZWgIR0A2dUAT7EYPdX2UKGgGR0BVBzm0VrRCaAdLpWgIR0A2eU+s5n14dX2UKGgGR0BXQkqx1PnCaAdLSGgIR0A2fZHNHH3ldX2UKGgGR0BWtundfsu4aAdLXWgIR0A2hxO+IuXedX2UKGgGR0BW5Xtnf2saaAdLXGgIR0A2ixYq5LAYdX2UKGgGR0BWqsAaNuLraAdLZGgIR0A2kLYwqRU4dX2UKGgGR0BW1xK15Sm7aAdLWWgIR0A2kquKXOW0dX2UKGgGR0BWu1ZxJd0JaAdLX2gIR0A2nEV32VVxdX2UKGgGR0BWk1V94NZvaAdLYmgIR0A2ofek56t1dX2UKGgGR0BWzbt/nW8RaAdLXGgIR0A2po11nuiOdX2UKGgGR0BWbMzMzMzNaAdLZ2gIR0A2tH4Glhw3dX2UKGgGR0BVIvGhmGucaAdLo2gIR0A2uXOGCZnddX2UKGgGR0BVfqWom5UcaAdLlmgIR0A2yZaV2Rq5dX2UKGgGR0BWyFxKg7HRaAdLWmgIR0A2yhvBJqZddX2UKGgGR0BUbg2dd3SsaAdLv2gIR0A2z4eLehwmdX2UKGgGR0BWG9eMQ2/BaAdLdmgIR0A21XQ+lj3FdX2UKGgGR0BXYHPzFuNxaAdLRWgIR0A230VrRBu5dX2UKGgGR0BWx9Q0oBq9aAdLXmgIR0A24EMspXp4dX2UKGgGR0BWr2pVCHARaAdLYmgIR0A27U4rBj4IdX2UKGgGR0BW28/IKc/daAdLWmgIR0A29XCTEBKddX2UKGgGR0BU9wJswco6aAdLtWgIR0A29kgOjIq9dX2UKGgGR0BXZ9Wp6yB1aAdLTGgIR0A3ABZZB9kSdX2UKGgGR0BViJQxesxPaAdLlmgIR0A3BavicXnAdX2UKGgGR0BW3xsdkrf+aAdLV2gIR0A3C+YtxuKodX2UKGgGR0BWedFjNIK/aAdLZmgIR0A3Dq6OHWSVdX2UKGgGR0BW0jNY8uBdaAdLWGgIR0A3FRT0g8r7dX2UKGgGR0BW5Vgc94eLaAdLWGgIR0A3G6S1Vo6CdX2UKGgGR0BWmHL/0dzXaAdLYWgIR0A3JqWTot+TdX2UKGgGR0BVn9hNM496aAdLjGgIR0A3Le2NNrTIdX2UKGgGR0BWoM7IT4+KaAdLa2gIR0A3MG4I8hcJdX2UKGgGR0BWspv99+gEaAdLXWgIR0A3MpVS4vvjdX2UKGgGR0BXdNBfKISEaAdLTWgIR0A3OYnOSntOdX2UKGgGR0BWxWAskIHDaAdLW2gIR0A3RUg0TDfndX2UKGgGR0BW688xKxs3aAdLV2gIR0A3RmJFb3XadX2UKGgGR0BU8Viay8jBaAdLqGgIR0A3VnEl3QlbdX2UKGgGR0BV/P7rLQokaAdLhmgIR0A3WNpM6BAfdX2UKGgGR0BWsp31SOzZaAdLXWgIR0A3W13t8eCDdX2UKGgGR0BWnMgpz90jaAdLYWgIR0A3XUe+23KCdX2UKGgGR0BWwdA1NxlyaAdLXGgIR0A3bEFnqVyFdX2UKGgGR0BWroZ62OQyaAdLX2gIR0A3b0/GEPDpdX2UKGgGR0BW0xQ79ycTaAdLWGgIR0A3cBEKE385dX2UKGgGR0BWnyfHxSYPaAdLYWgIR0A3dCr92ovSdX2UKGgGR0BW0RXCCSRsaAdLWGgIR0A3hQaJhvzfdX2UKGgGR0BWhiq6vq1PaAdLc2gIR0A3hxiG34KydX2UKGgGR0BXCOsgdOqOaAdLUWgIR0A3mFyJbdJrdX2UKGgGR0BWmrSNOuaGaAdLZWgIR0A3nuV5a/yodX2UKGgGR0BT5XzDn/1haAdL4WgIR0A3qjzZpSJkdX2UKGgGR0BWslmz0HyFaAdLXWgIR0A3rnmq5sj3dX2UKGgGR0BWwNA1NxlyaAdLXmgIR0A3tSr5qM3qdX2UKGgGR0BXBLlzU7SzaAdLVmgIR0A3wwWFev6kdX2UKGgGR0BV7R9oexOdaAdLgmgIR0A3yLaEi+tbdX2UKGgGR0BXKBfKISDiaAdLTWgIR0A31NUwSJ0odX2UKGgGR0BUylBppN9IaAdLrGgIR0A33vv0AcT8dX2UKGgGR0BWmCz1K5CoaAdLYmgIR0A34JTVDrqudX2UKGgGR0BWq2u5jH4oaAdLXmgIR0A363oLXtjTdX2UKGgGR0BXT+oxYaHcaAdLTGgIR0A38ZOSGJvYdX2UKGgGR0BW87piZv1laAdLVGgIR0A39QY1pCa7dX2UKGgGR0BWwGWUr08OaAdLW2gIR0A4ATLGJemfdX2UKGgGR0BW46rzXjEOaAdLYWgIR0A4C8XvYvnKdX2UKGgGR0BWGRZEDyOJaAdLfWgIR0A4DqZc9nscdX2UKGgGR0BBDd07r9l3aAdNpAJoCEdAOBBXwLE1mHV9lChoBkdAVtdPbfxc3WgHS1hoCEdAOBXdoFmnO3V9lChoBkdAVwICo0hvBWgHS1loCEdAOCBuwX668XV9lChoBkdAVvypHZsbemgHS1NoCEdAOCI3irDIinV9lChoBkdAVx3BXS0BwWgHS01oCEdAOCJ4fOlfq3V9lChoBkdAVz5CXyAhCGgHS1NoCEdAOCmA08/2TXV9lChoBkdAV0Q9t/FzdWgHS0doCEdAODApnYg7o3V9lChoBkdAVqmfRNRFZ2gHS19oCEdAODhHskY4yXV9lChoBkdAVt3J7sv7FmgHS15oCEdAODhjBl+VknV9lChoBkdAVr8pPRArx2gHS1toCEdAOEVzZHuqm3VlLg=="
90
+ },
91
+ "ep_success_buffer": {
92
+ ":type:": "<class 'collections.deque'>",
93
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
94
+ },
95
+ "_n_updates": 250,
96
+ "n_steps": 100,
97
+ "gamma": 0.99,
98
+ "gae_lambda": 1.0,
99
+ "ent_coef": 0.0,
100
+ "vf_coef": 0.5,
101
+ "max_grad_norm": 0.5,
102
+ "normalize_advantage": false
103
+ }
a2c-MountainCarContinuous-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de167dface65f614d4f7324c4dfac09a10e57e349d7464fd90e58ff093d6a1a4
3
+ size 39294
a2c-MountainCarContinuous-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec56c4b9625a113b419012de92ba50e05af9dd889a06cbd3c363ea5a4da2612c
3
+ size 39998
a2c-MountainCarContinuous-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-MountainCarContinuous-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
2
+ - Python: 3.9.12
3
+ - Stable-Baselines3: 1.8.0a6
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
args.yml ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - a2c
4
+ - - device
5
+ - auto
6
+ - - env
7
+ - MountainCarContinuous-v0
8
+ - - env_kwargs
9
+ - null
10
+ - - eval_episodes
11
+ - 5
12
+ - - eval_freq
13
+ - 25000
14
+ - - gym_packages
15
+ - []
16
+ - - hyperparams
17
+ - null
18
+ - - log_folder
19
+ - logs
20
+ - - log_interval
21
+ - -1
22
+ - - max_total_trials
23
+ - null
24
+ - - n_eval_envs
25
+ - 1
26
+ - - n_evaluations
27
+ - null
28
+ - - n_jobs
29
+ - 1
30
+ - - n_startup_trials
31
+ - 10
32
+ - - n_timesteps
33
+ - -1
34
+ - - n_trials
35
+ - 500
36
+ - - no_optim_plots
37
+ - false
38
+ - - num_threads
39
+ - -1
40
+ - - optimization_log_path
41
+ - null
42
+ - - optimize_hyperparameters
43
+ - false
44
+ - - progress
45
+ - false
46
+ - - pruner
47
+ - median
48
+ - - sampler
49
+ - tpe
50
+ - - save_freq
51
+ - -1
52
+ - - save_replay_buffer
53
+ - false
54
+ - - seed
55
+ - 3455073444
56
+ - - storage
57
+ - null
58
+ - - study_name
59
+ - null
60
+ - - tensorboard_log
61
+ - runs/MountainCarContinuous-v0__a2c__3455073444__1671036446
62
+ - - track
63
+ - true
64
+ - - trained_agent
65
+ - ''
66
+ - - truncate_last_trajectory
67
+ - true
68
+ - - uuid
69
+ - false
70
+ - - vec_env
71
+ - dummy
72
+ - - verbose
73
+ - 1
74
+ - - wandb_entity
75
+ - openrlbenchmark
76
+ - - wandb_project_name
77
+ - sb3
78
+ - - yaml_file
79
+ - null
config.yml ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - ent_coef
3
+ - 0.0
4
+ - - n_envs
5
+ - 4
6
+ - - n_steps
7
+ - 100
8
+ - - n_timesteps
9
+ - 100000.0
10
+ - - normalize
11
+ - true
12
+ - - policy
13
+ - MlpPolicy
14
+ - - policy_kwargs
15
+ - dict(log_std_init=0.0, ortho_init=False)
16
+ - - sde_sample_freq
17
+ - 16
18
+ - - use_sde
19
+ - true
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9179bae0de9989998427a346a934df9f5ca234a2a980ce06e2045fddfb2c6d3e
3
+ size 256264
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 90.9384858, "std_reward": 0.1641556619113708, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T14:51:15.547936"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0fdb3828795e0fc39974a51f108da1e06dc5000782c85ee320556ba311c9d7a
3
+ size 20363
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66d90893e2e6dddf4dfa87c90bf459e72e225a6e8906d1ed0034a61a2a568ea8
3
+ size 4059