Quentin Gallouédec commited on
Commit
f1c38fd
1 Parent(s): a355e3d

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLanderContinuous-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLanderContinuous-v2
16
+ type: LunarLanderContinuous-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 131.67 +/- 101.90
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **LunarLanderContinuous-v2**
25
+ This is a trained model of a **A2C** agent playing **LunarLanderContinuous-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo a2c --env LunarLanderContinuous-v2 -orga qgallouedec -f logs/
47
+ python -m rl_zoo3.enjoy --algo a2c --env LunarLanderContinuous-v2 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo a2c --env LunarLanderContinuous-v2 -orga qgallouedec -f logs/
53
+ python -m rl_zoo3.enjoy --algo a2c --env LunarLanderContinuous-v2 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo a2c --env LunarLanderContinuous-v2 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo a2c --env LunarLanderContinuous-v2 -f logs/ -orga qgallouedec
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('ent_coef', 0.0),
66
+ ('gae_lambda', 0.9),
67
+ ('gamma', 0.99),
68
+ ('learning_rate', 'lin_7e-4'),
69
+ ('max_grad_norm', 0.5),
70
+ ('n_envs', 4),
71
+ ('n_steps', 8),
72
+ ('n_timesteps', 5000000.0),
73
+ ('normalize', True),
74
+ ('normalize_advantage', False),
75
+ ('policy', 'MlpPolicy'),
76
+ ('policy_kwargs', 'dict(log_std_init=-2, ortho_init=False)'),
77
+ ('use_rms_prop', True),
78
+ ('use_sde', True),
79
+ ('vf_coef', 0.4),
80
+ ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
81
+ ```
a2c-LunarLanderContinuous-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4488dbdd245af9fbc968a3447b7399de3727ed38426bbe6d95a14659baf5d293
3
+ size 107012
a2c-LunarLanderContinuous-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0a6
a2c-LunarLanderContinuous-v2/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd2ff250d30>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd2ff250dc0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd2ff250e50>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd2ff250ee0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd2ff250f70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd2ff251040>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd2ff2510d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd2ff251160>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd2ff2511f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd2ff251280>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd2ff251310>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd2ff2513a0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fd2ff252400>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 8
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False]",
45
+ "bounded_above": "[False False False False False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVDgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAAAAIC/AACAv5RoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAAAAAIA/AACAP5RoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgtjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 2
54
+ ],
55
+ "low": "[-1. -1.]",
56
+ "high": "[1. 1.]",
57
+ "bounded_below": "[ True True]",
58
+ "bounded_above": "[ True True]",
59
+ "_np_random": "RandomState(MT19937)"
60
+ },
61
+ "n_envs": 1,
62
+ "num_timesteps": 5000000,
63
+ "_total_timesteps": 5000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": 0,
66
+ "action_noise": null,
67
+ "start_time": 1671028002205511727,
68
+ "learning_rate": {
69
+ ":type:": "<class 'function'>",
70
+ ":serialized:": "gAWVWwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTRsBQwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAdybF96b28zlIwIX19uYW1lX1+UjA1ybF96b28zLnV0aWxzlIwIX19maWxlX1+UjDQvaG9tZS9xZ2FsbG91ZWRlYy9ybC1iYXNlbGluZXMzLXpvby9ybF96b28zL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKIwScHJvZ3Jlc3NfcmVtYWluaW5nlIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgtdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAmMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
71
+ },
72
+ "tensorboard_log": "runs/LunarLanderContinuous-v2__a2c__3898385124__1671027999/LunarLanderContinuous-v2",
73
+ "lr_schedule": {
74
+ ":type:": "<class 'function'>",
75
+ ":serialized:": "gAWVWwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTRsBQwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAdybF96b28zlIwIX19uYW1lX1+UjA1ybF96b28zLnV0aWxzlIwIX19maWxlX1+UjDQvaG9tZS9xZ2FsbG91ZWRlYy9ybC1iYXNlbGluZXMzLXpvby9ybF96b28zL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKIwScHJvZ3Jlc3NfcmVtYWluaW5nlIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgtdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAmMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
76
+ },
77
+ "_last_obs": null,
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAM1MkrlG5rM/qMDnvAlEeL4zJK05LfvROwAAAAAAAAAAAES1u4UYtT/icQ+/yQ4xPj5E0jsv+AE+AAAAAAAAAAAzm9A73dS1P9ERJT/uUNs+pX/xuxuQFb4AAAAAAAAAADOv7Lv/R7M/d0w7v8MP6r67PQk8KrQpPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwiGlIwBQ5R0lFKULg=="
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVVxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsWoQ5nYPHkCUhpRSlIwBbJRLb4wBdJRHQMAHtNSIgvF1fZQoaAZoCWgPQwgZOQt7WihvQJSGlFKUaBVNHAFoFkdAwAe2Yc/+sHV9lChoBmgJaA9DCKCH2jaMbkPAlIaUUpRoFUtsaBZHQMAH+DNpudh1fZQoaAZoCWgPQwiRmKCG74lnwJSGlFKUaBVNCANoFkdAwAgUGmk30nV9lChoBmgJaA9DCMn/5O/eQ1HAlIaUUpRoFUudaBZHQMAIFasZHd51fZQoaAZoCWgPQwhxjjo6Lt9pQJSGlFKUaBVL+WgWR0DACIcqhDgJdX2UKGgGaAloD0MImUaTizHDbECUhpRSlGgVTUkBaBZHQMAI6h8IAwR1fZQoaAZoCWgPQwjggQGEj3FpQJSGlFKUaBVLqWgWR0DACQ/pwCKadX2UKGgGaAloD0MIzosTX+03XkCUhpRSlGgVTdIDaBZHQMAJN/I0ZWJ1fZQoaAZoCWgPQwjhRPRr621UwJSGlFKUaBVNBAJoFkdAwAlz8CxNZnV9lChoBmgJaA9DCEt1AS+zXGhAlIaUUpRoFU0JAWgWR0DACdVthuwYdX2UKGgGaAloD0MIFNBE2PDJaECUhpRSlGgVTVABaBZHQMAJ5Bz/6wd1fZQoaAZoCWgPQwirB8xDJqdsQJSGlFKUaBVL/2gWR0DACgdAAyVOdX2UKGgGaAloD0MI3/lFCXqsb0CUhpRSlGgVTTYBaBZHQMAKjoU8FIN1fZQoaAZoCWgPQwiQgqeQq7JvQJSGlFKUaBVL+2gWR0DAC3b+WGATdX2UKGgGaAloD0MIrp6T3jelZUCUhpRSlGgVTeIBaBZHQMALgH9WIXV1fZQoaAZoCWgPQwgNi1HX2sxeQJSGlFKUaBVN2ANoFkdAwAuqoVmBfHV9lChoBmgJaA9DCIbnpWJj2jDAlIaUUpRoFUtSaBZHQMAL05QP7N11fZQoaAZoCWgPQwjECrd8JGRbwJSGlFKUaBVN3wJoFkdAwAvw0kWyknV9lChoBmgJaA9DCLfvUX+9d2pAlIaUUpRoFUveaBZHQMAL/25xzaN1fZQoaAZoCWgPQwhIwylzc5JsQJSGlFKUaBVNUwFoFkdAwAyhXGOuJXV9lChoBmgJaA9DCJon1xTIpV5AlIaUUpRoFU3oAWgWR0DADKJXKbKBdX2UKGgGaAloD0MIS+oENJElbECUhpRSlGgVTYUBaBZHQMAM8QT238Z1fZQoaAZoCWgPQwhGJuDXSBRKwJSGlFKUaBVLrmgWR0DADQqONo8IdX2UKGgGaAloD0MIl1KXjGNZZECUhpRSlGgVTesBaBZHQMAPFMZpBX11fZQoaAZoCWgPQwho6nWLwKhSwJSGlFKUaBVN6ANoFkdAwA9Hj0+TvHV9lChoBmgJaA9DCEypS8YxBEXAlIaUUpRoFUt8aBZHQMAPfyMkyDZ1fZQoaAZoCWgPQwhxOzQsRtE3wJSGlFKUaBVN6ANoFkdAwBBHO9nK4nV9lChoBmgJaA9DCL3l6sema2dAlIaUUpRoFU0ZAWgWR0DAEHnEVFhHdX2UKGgGaAloD0MINs6mI4BfQMCUhpRSlGgVTegDaBZHQMAQp48EFGJ1fZQoaAZoCWgPQwgOu+8YHmdJwJSGlFKUaBVLiWgWR0DAEKouyu6mdX2UKGgGaAloD0MIrb1PVaExGsCUhpRSlGgVS2loFkdAwBDkx3V093V9lChoBmgJaA9DCDo/xXHgVGpAlIaUUpRoFUviaBZHQMARCFTm4iJ1fZQoaAZoCWgPQwjd7uU+Oc4zQJSGlFKUaBVLZGgWR0DAESivFFUidX2UKGgGaAloD0MIGttrQe/MbUCUhpRSlGgVS+poFkdAwBE5sImgJ3V9lChoBmgJaA9DCNoCQuvh10TAlIaUUpRoFUuTaBZHQMARj1xCIDZ1fZQoaAZoCWgPQwhnutdJfftgQJSGlFKUaBVNcQNoFkdAwBHp0aIeo3V9lChoBmgJaA9DCKTjamRXk2lAlIaUUpRoFU0nAWgWR0DAEswS8J2MdX2UKGgGaAloD0MIVrq7zoZ+aUCUhpRSlGgVTTMBaBZHQMAUYPXCj1x1fZQoaAZoCWgPQwj76qpALRhKwJSGlFKUaBVN6ANoFkdAwBT+qp97W3V9lChoBmgJaA9DCHwOLEfIoErAlIaUUpRoFU3oA2gWR0DAFV/JiiItdX2UKGgGaAloD0MIt7dbkgOEU8CUhpRSlGgVS3NoFkdAwBV/WxyGSXV9lChoBmgJaA9DCCnrNxPTV0HAlIaUUpRoFU3oA2gWR0DAFbzs2NvPdX2UKGgGaAloD0MIb6DAO/ksTsCUhpRSlGgVS7poFkdAwBXc3WnTAnV9lChoBmgJaA9DCDI5tTPM3W9AlIaUUpRoFU0DAWgWR0DAFiHjsD4hdX2UKGgGaAloD0MIPnlYqDVKUsCUhpRSlGgVS9BoFkdAwBYyFOfukXV9lChoBmgJaA9DCLPttDUiXFjAlIaUUpRoFUvlaBZHQMAWZXoLXtl1fZQoaAZoCWgPQwj4a7JGPYRewJSGlFKUaBVN2QJoFkdAwBbILronr3V9lChoBmgJaA9DCI9Rnnk5mGxAlIaUUpRoFU2HAWgWR0DAGLZoVVPvdX2UKGgGaAloD0MIo5Ol1nt0a0CUhpRSlGgVTRABaBZHQMAZraxX4j91fZQoaAZoCWgPQwiRup195f06wJSGlFKUaBVN6ANoFkdAwBuJxy4nW3V9lChoBmgJaA9DCHkEN1K2FlnAlIaUUpRoFU3oA2gWR0DAG/Df1pTNdX2UKGgGaAloD0MIn8vUJHhbPcCUhpRSlGgVS3ZoFkdAwBwOQ4jrzHV9lChoBmgJaA9DCBqLprOTxGXAlIaUUpRoFU2MA2gWR0DAHBtCRfWudX2UKGgGaAloD0MIlwM91LbdNMCUhpRSlGgVS1hoFkdAwBxK7L+xW3V9lChoBmgJaA9DCJGYoIZvn1TAlIaUUpRoFU07AWgWR0DAHZrewcHXdX2UKGgGaAloD0MIoiWPp+W6UsCUhpRSlGgVTegDaBZHQMAeQRWDHwR1fZQoaAZoCWgPQwiuEiwOZ4I8wJSGlFKUaBVN6ANoFkdAwCCKgpSaVnV9lChoBmgJaA9DCKK2DaMgvFLAlIaUUpRoFU3oA2gWR0DAIMaY3Ns4dX2UKGgGaAloD0MIaqSl8nZ0bkCUhpRSlGgVTRkBaBZHQMAhiX/YJ3R1fZQoaAZoCWgPQwiqu7ILBpdgQJSGlFKUaBVNhQNoFkdAwCG/MHryD3V9lChoBmgJaA9DCEMEHEKVHFvAlIaUUpRoFU1tAWgWR0DAIfBzJZGKdX2UKGgGaAloD0MIUP2DSAbDbECUhpRSlGgVS/FoFkdAwCI4PGyX2XV9lChoBmgJaA9DCHe688Rz9lHAlIaUUpRoFU3oA2gWR0DAIkqbSZ0CdX2UKGgGaAloD0MIHm6HhkURakCUhpRSlGgVTUkBaBZHQMAifkuYhMd1fZQoaAZoCWgPQwjmWUkr/vZxQJSGlFKUaBVLn2gWR0DAIpSOq//OdX2UKGgGaAloD0MIYytoWmKSakCUhpRSlGgVS8doFkdAwCKbD3M6inV9lChoBmgJaA9DCHXkSGfgrmxAlIaUUpRoFUuhaBZHQMAi/8Wj4591fZQoaAZoCWgPQwiBsFOsmk5uQJSGlFKUaBVL3GgWR0DAIycTxoZidX2UKGgGaAloD0MIdvusMlPOQsCUhpRSlGgVS2VoFkdAwCOC+RoysXV9lChoBmgJaA9DCIelgR/VKVvAlIaUUpRoFU16AWgWR0DAJLoP07KadX2UKGgGaAloD0MIguUIGUgcakCUhpRSlGgVTSIBaBZHQMAlEtwrDqJ1fZQoaAZoCWgPQwilL4Sc9wJeQJSGlFKUaBVNmQNoFkdAwCUmhr30w3V9lChoBmgJaA9DCOZ2L/fJIGNAlIaUUpRoFU0dA2gWR0DAJZvbGm1qdX2UKGgGaAloD0MIkbWGUnsZR8CUhpRSlGgVS6RoFkdAwCWkYhMaj3V9lChoBmgJaA9DCM6njlVKflHAlIaUUpRoFUvXaBZHQMAlwzLW7OF1fZQoaAZoCWgPQwiF6XsNwb9GwJSGlFKUaBVLqGgWR0DAJfCrBCUpdX2UKGgGaAloD0MIbeF5qVgDb0CUhpRSlGgVTS8BaBZHQMAnHU2UB4l1fZQoaAZoCWgPQwhpxqLp7IxJQJSGlFKUaBVLnGgWR0DAJ/67CiyqdX2UKGgGaAloD0MIr5P6srQ7OcCUhpRSlGgVTegDaBZHQMApKBEa2nd1fZQoaAZoCWgPQwiuYvGbQvdtQJSGlFKUaBVNTAFoFkdAwCoSeJYT03V9lChoBmgJaA9DCByxFp+CymlAlIaUUpRoFUveaBZHQMAqZKSX+l11fZQoaAZoCWgPQwiyn8VSJFtBwJSGlFKUaBVN6ANoFkdAwCppFLnLaHV9lChoBmgJaA9DCKxzDMheSzbAlIaUUpRoFU3oA2gWR0DAKpgk7fYSdX2UKGgGaAloD0MIs9KkFHQ0b0CUhpRSlGgVS6BoFkdAwCqg8Zk08HV9lChoBmgJaA9DCONsOgK4C0dAlIaUUpRoFUtZaBZHQMAqsmaYu011fZQoaAZoCWgPQwhegehJGaRrQJSGlFKUaBVL1GgWR0DAKsfWcz68dX2UKGgGaAloD0MIvW2mQjynUcCUhpRSlGgVTQYBaBZHQMArK1Gsmv51fZQoaAZoCWgPQwi5UPnX8n5CwJSGlFKUaBVLZWgWR0DAK2xQSBbwdX2UKGgGaAloD0MIa9WuCWnBakCUhpRSlGgVTWgCaBZHQMAsF8QZn+R1fZQoaAZoCWgPQwiU2otoO+lrQJSGlFKUaBVNbgFoFkdAwCzMhL5AQnV9lChoBmgJaA9DCBfX+Ez2IWpAlIaUUpRoFUvWaBZHQMAs/n6Eal11fZQoaAZoCWgPQwinXUwzXRxgQJSGlFKUaBVN5wNoFkdAwC1JzxwyZnV9lChoBmgJaA9DCORNfovO8mdAlIaUUpRoFUvnaBZHQMAt9dilSCR1fZQoaAZoCWgPQwghAaPLmwlUwJSGlFKUaBVN6ANoFkdAwC40OcUdrHV9lChoBmgJaA9DCLg6AOKuU2lAlIaUUpRoFU2eAWgWR0DALloy6+WXdX2UKGgGaAloD0MIa9WuCWkyVMCUhpRSlGgVTTIBaBZHQMAuuLpJPIp1fZQoaAZoCWgPQwihaB7AIptEwJSGlFKUaBVL0mgWR0DALtC5uqFRdX2UKGgGaAloD0MIN4sXC0MQQcCUhpRSlGgVS1xoFkdAwC7rRaX8fnV9lChoBmgJaA9DCOTZ5VsfyW5AlIaUUpRoFU0NAWgWR0DAL3EgyM1kdWUu"
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 156250,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-LunarLanderContinuous-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10ec73eeb1f0b11b5f34a92ec77edf9a600f486dcbdfb6718971e9e9d24863ae
3
+ size 42878
a2c-LunarLanderContinuous-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d4dc09b8b757ba9d17162f0d5707cbb4b0df7ec25b25d508758cc38303ee399
3
+ size 43582
a2c-LunarLanderContinuous-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-LunarLanderContinuous-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
2
+ - Python: 3.9.12
3
+ - Stable-Baselines3: 1.8.0a6
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
args.yml ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - a2c
4
+ - - device
5
+ - auto
6
+ - - env
7
+ - LunarLanderContinuous-v2
8
+ - - env_kwargs
9
+ - null
10
+ - - eval_episodes
11
+ - 5
12
+ - - eval_freq
13
+ - 25000
14
+ - - gym_packages
15
+ - []
16
+ - - hyperparams
17
+ - null
18
+ - - log_folder
19
+ - logs
20
+ - - log_interval
21
+ - -1
22
+ - - max_total_trials
23
+ - null
24
+ - - n_eval_envs
25
+ - 1
26
+ - - n_evaluations
27
+ - null
28
+ - - n_jobs
29
+ - 1
30
+ - - n_startup_trials
31
+ - 10
32
+ - - n_timesteps
33
+ - -1
34
+ - - n_trials
35
+ - 500
36
+ - - no_optim_plots
37
+ - false
38
+ - - num_threads
39
+ - -1
40
+ - - optimization_log_path
41
+ - null
42
+ - - optimize_hyperparameters
43
+ - false
44
+ - - progress
45
+ - false
46
+ - - pruner
47
+ - median
48
+ - - sampler
49
+ - tpe
50
+ - - save_freq
51
+ - -1
52
+ - - save_replay_buffer
53
+ - false
54
+ - - seed
55
+ - 3898385124
56
+ - - storage
57
+ - null
58
+ - - study_name
59
+ - null
60
+ - - tensorboard_log
61
+ - runs/LunarLanderContinuous-v2__a2c__3898385124__1671027999
62
+ - - track
63
+ - true
64
+ - - trained_agent
65
+ - ''
66
+ - - truncate_last_trajectory
67
+ - true
68
+ - - uuid
69
+ - false
70
+ - - vec_env
71
+ - dummy
72
+ - - verbose
73
+ - 1
74
+ - - wandb_entity
75
+ - openrlbenchmark
76
+ - - wandb_project_name
77
+ - sb3
78
+ - - yaml_file
79
+ - null
config.yml ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - ent_coef
3
+ - 0.0
4
+ - - gae_lambda
5
+ - 0.9
6
+ - - gamma
7
+ - 0.99
8
+ - - learning_rate
9
+ - lin_7e-4
10
+ - - max_grad_norm
11
+ - 0.5
12
+ - - n_envs
13
+ - 4
14
+ - - n_steps
15
+ - 8
16
+ - - n_timesteps
17
+ - 5000000.0
18
+ - - normalize
19
+ - true
20
+ - - normalize_advantage
21
+ - false
22
+ - - policy
23
+ - MlpPolicy
24
+ - - policy_kwargs
25
+ - dict(log_std_init=-2, ortho_init=False)
26
+ - - use_rms_prop
27
+ - true
28
+ - - use_sde
29
+ - true
30
+ - - vf_coef
31
+ - 0.4
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c54412571a5a72a765c7957f649968814c712b000da39ec73000dc1fb71664dc
3
+ size 262600
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 131.66861260000002, "std_reward": 101.89909685266403, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T14:25:43.192886"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a1628df3ac8b3f21ac0e4167a7d353c53a477fc6273ac706677bb92c8c8fa40
3
+ size 357386
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:849be9bc2551cc13923520b9e175cdc2188253ffa3c7de584d8a504a5a67cdc3
3
+ size 4323