Update README.md
Browse files
README.md
CHANGED
@@ -39,34 +39,15 @@ You can use this model directly with a pipeline for masked language modeling:
|
|
39 |
>>>from transformers import pipeline
|
40 |
>>>fill_mask = pipeline("fill-mask", model="./models/bert-base-qarib_far")
|
41 |
>>> fill_mask("و+قام ال+مدير [MASK]")
|
42 |
-
|
43 |
-
{'sequence': '[CLS] وقام المدير بالعمل [SEP]', 'score': 0.0678194984793663, 'token': 4230, 'token_str': 'بالعمل'},
|
44 |
-
{'sequence': '[CLS] وقام المدير بذلك [SEP]', 'score': 0.05191086605191231, 'token': 984, 'token_str': 'بذلك'},
|
45 |
-
{'sequence': '[CLS] وقام المدير بالاتصال [SEP]', 'score': 0.045264165848493576, 'token': 26096, 'token_str': 'بالاتصال'},
|
46 |
-
{'sequence': '[CLS] وقام المدير بعمله [SEP]', 'score': 0.03732728958129883, 'token': 40486, 'token_str': 'بعمله'},
|
47 |
-
{'sequence': '[CLS] وقام المدير بالامر [SEP]', 'score': 0.0246378555893898, 'token': 29124, 'token_str': 'بالامر'}
|
48 |
-
]
|
49 |
>>> fill_mask("و+قام+ت ال+مدير+ة [MASK]")
|
50 |
-
|
51 |
-
{'sequence': '[CLS] وقامت المديرة بالامر [SEP]', 'score': 0.108805812895298, 'token': 29124, 'token_str': 'بالامر'},
|
52 |
-
{'sequence': '[CLS] وقامت المديرة بالعمل [SEP]', 'score': 0.06639821827411652, 'token': 4230, 'token_str': 'بالعمل'},
|
53 |
-
{'sequence': '[CLS] وقامت المديرة بالاتصال [SEP]', 'score': 0.05613093823194504, 'token': 26096, 'token_str': 'بالاتصال'},
|
54 |
-
{'sequence': '[CLS] وقامت المديرة المديرة [SEP]', 'score': 0.021778125315904617, 'token': 41635, 'token_str': 'المديرة'}]
|
55 |
>>> fill_mask("قللي وشفيييك يرحم [MASK]")
|
56 |
-
|
57 |
-
%{'sequence': '[CLS] قللي وشفيييك يرحملي [SEP]', 'score': 0.07663793861865997, 'token': 294, 'token_str': '##لي'},
|
58 |
-
%{'sequence': '[CLS] قللي وشفيييك يرحم حالك [SEP]', 'score': 0.0453166700899601, 'token': 2663, 'token_str': 'حالك'},
|
59 |
-
%{'sequence': '[CLS] قللي وشفيييك يرحم امك [SEP]', 'score': 0.04390475153923035, 'token': 1942, 'token_str': 'امك'},
|
60 |
-
%{'sequence': '[CLS] قللي وشفيييك يرحمونك [SEP]', 'score': 0.027349254116415977, 'token': 3283, 'token_str': '##ونك'}]
|
61 |
```
|
62 |
## Evaluations:
|
63 |
-
|
64 |
-
|
65 |
-
|Dialect Identification | 6.06% | 59.92% | 59.85% | 61.70% | **65.21%** |
|
66 |
-
|Emotion Detection | 27.90% | 43.89% | 42.37% | 41.65% | **44.35%** |
|
67 |
-
|Named-Entity Recognition (NER) | 49.38% | 64.97% | **66.63%** | 64.04% | 61.62% |
|
68 |
-
|Offensive Language Detection | 83.14% | 88.07% | 88.97% | 88.19% | **91.94%** |
|
69 |
-
|Sentiment Analysis | 86.61% | 90.80% | **93.58%** | 83.27% | 93.31% |
|
70 |
## Model Weights and Vocab Download
|
71 |
From Huggingface site: https://huggingface.co/qarib/bert-base-qarib_far
|
72 |
## Contacts
|
|
|
39 |
>>>from transformers import pipeline
|
40 |
>>>fill_mask = pipeline("fill-mask", model="./models/bert-base-qarib_far")
|
41 |
>>> fill_mask("و+قام ال+مدير [MASK]")
|
42 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
>>> fill_mask("و+قام+ت ال+مدير+ة [MASK]")
|
44 |
+
|
|
|
|
|
|
|
|
|
45 |
>>> fill_mask("قللي وشفيييك يرحم [MASK]")
|
46 |
+
|
|
|
|
|
|
|
|
|
47 |
```
|
48 |
## Evaluations:
|
49 |
+
|
50 |
+
|
|
|
|
|
|
|
|
|
|
|
51 |
## Model Weights and Vocab Download
|
52 |
From Huggingface site: https://huggingface.co/qarib/bert-base-qarib_far
|
53 |
## Contacts
|