metadata
language:
- fr
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small French
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0 fr
type: mozilla-foundation/common_voice_11_0
config: fr
split: test
args: fr
metrics:
- name: Wer
type: wer
value: 15.38
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: facebook/voxpopuli fr
type: facebook/voxpopuli
config: fr
split: test
args: fr
metrics:
- name: Wer
type: wer
value: 16.29
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: google/fleurs fr_fr
type: google/fleurs
config: fr_fr
split: test
args: fr_fr
metrics:
- name: Wer
type: wer
value: 13.98
Whisper Small French
This model is a fine-tuned version of openai/whisper-small on the mozilla-foundation/common_voice_11_0 fr dataset. It achieves the following results on the evaluation set:
- Loss: 0.00
- WER on
mozilla-foundation/common_voice_11_0
FR (with normalization): 15.38 % - WER on
facebook/voxpopuli
FR (with normalization): 16.29 % - WER on
google/fleurs
fr_fr (with normalization): 13.98 %
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.11.0+cu102
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2