|
--- |
|
license: mit |
|
pipeline_tag: zero-shot-image-classification |
|
--- |
|
|
|
The model that corresponds to Q-Align (ICML2024). |
|
|
|
## Quick Start with AutoModel |
|
|
|
For this image, ![](https://raw.githubusercontent.com/Q-Future/Q-Align/main/fig/singapore_flyer.jpg) start an AutoModel scorer with `transformers==4.36.1`: |
|
|
|
```python |
|
import requests |
|
import torch |
|
from transformers import AutoModelForCausalLM |
|
|
|
model = AutoModelForCausalLM.from_pretrained("q-future/one-align", trust_remote_code=True, attn_implementation="eager", |
|
torch_dtype=torch.float16, device_map="auto") |
|
|
|
from PIL import Image |
|
url = "https://raw.githubusercontent.com/Q-Future/Q-Align/main/fig/singapore_flyer.jpg" |
|
image = Image.open(requests.get(url,stream=True).raw) |
|
model.score([image], task_="quality", input_="image") |
|
# task_ : quality | aesthetics; # input_: image | video |
|
``` |
|
|
|
|
|
Result should be 1.911 (in range [1,5], higher is better). |
|
|
|
From paper: `arxiv.org/abs/2312.17090`. |
|
|
|
## Syllabus |
|
|
|
![](https://raw.githubusercontent.com/Q-Future/Q-Align/main/fig/q-align-syllabus.png) |
|
|
|
## IQA Results (Spearman/Pearson/Kendall) |
|
|Datasets | KonIQ (NR-IQA, seen) | SPAQ (NR-IQA, Seen) | KADID (FR-IQA, Seen) | LIVE-C (NR-IQA, *Unseen*) | LIVE (FR-IQA, *Unseen*) | CSIQ (FR-IQA, *Unseen*) | AGIQA (AIGC, *Unseen*)| |
|
| --- | --- | --- | --- | --- | --- | --- | --- | |
|
| *Previous SOTA* | 0.916/0.928 (MUSIQ, ICCV2021) | 0.922/0.919 (LIQE, CVPR2023) | 0.934/0.937 (CONTRIQUE, TIP2022) | NA | NA | NA | NA | |
|
| Q-Align (IQA) | 0.937/0.945/0.785 | 0.931/0.933/0.763 | 0.934/0.934/0.777 | 0.887/0.896/0.706 | 0.874/0.840/0.682 | 0.845/0.876/0.654 | 0.731/0.791/0.529 | |
|
| Q-Align (IQA+VQA) | **0.944**/0.949/**0.797** | 0.931/0.934/0.764 | **0.952**/**0.953**/**0.809** | **0.892**/**0.899**/**0.715** | 0.874/0.846/0.684 | 0.852/0.876/0.663 | 0.739/0.782/0.526 | |
|
| **OneAlign** (IQA+IAA+VQA) | 0.941/**0.950**/0.791 | **0.932**/**0.935**/**0.766** | 0.941/0.942/0.791 | 0.881/0.894/0.699 | **0.887**/**0.856**/**0.699** | **0.881**/**0.906**/**0.699** | **0.801**/**0.838**/**0.602** | |
|
|
|
## IAA Results (Spearman/Pearson) |
|
| Dataset | AVA_test | |
|
| --- | --- | |
|
| *VILA (CVPR, 2023)* | 0.774/0.774 | |
|
| *LIQE (CVPR, 2023)* | 0.776/0.763 | |
|
| *Aesthetic Predictor (retrained on AVA_train)* | 0.721/0.723 | |
|
| Q-Align (IAA) | 0.822/0.817 | |
|
| **OneAlign** (IQA+IAA+VQA) | **0.823**/**0.819** | |
|
|
|
## VQA Results (Spearman/Pearson) |
|
|
|
| Datasets | LSVQ_test | LSVQ_1080p | KoNViD-1k | MaxWell_test | |
|
| --- | --- | --- | --- | --- | |
|
| *SimpleVQA (ACMMM, 2022)* | 0.867/0.861 | 0.764/0.803 | 0.840/0.834 | 0.720/0.715 | |
|
| *FAST-VQA (ECCV 2022)* | 0.876/0.877 | 0.779/0.814 | 0.859/0.855 | 0.721/0.724 | |
|
| Q-Align (VQA) | 0.883/0.882 | 0.797/0.830 | 0.865/0.877 | 0.780/0.782 | |
|
| Q-Align (IQA+VQA) | 0.885/0.883 | 0.802/0.829 | 0.867/0.880 | **0.781**/**0.787** | |
|
| **OneAlign** (IQA+IAA+VQA) | **0.886**/**0.886** | **0.803**/**0.837** | **0.876**/**0.888** | **0.781**/0.786| |