|
--- |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
base_model: distilbert-base-multilingual-cased |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: multilabel_lora_distilbert_runews_classifier_tuned |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# multilabel_lora_distilbert_runews_classifier_tuned |
|
|
|
This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0019 |
|
- Accuracy: 0.8276 |
|
- F1: 0.8284 |
|
- Precision: 0.8317 |
|
- Recall: 0.8276 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0009143508688456378 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 7 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| No log | 1.0 | 91 | 0.5987 | 0.7634 | 0.7621 | 0.7648 | 0.7634 | |
|
| No log | 2.0 | 182 | 0.3768 | 0.8693 | 0.8698 | 0.8767 | 0.8693 | |
|
| No log | 3.0 | 273 | 0.2620 | 0.9065 | 0.9063 | 0.9093 | 0.9065 | |
|
| No log | 4.0 | 364 | 0.2427 | 0.9202 | 0.9203 | 0.9220 | 0.9202 | |
|
| No log | 5.0 | 455 | 0.2244 | 0.9367 | 0.9369 | 0.9387 | 0.9367 | |
|
| 0.3641 | 6.0 | 546 | 0.2385 | 0.9491 | 0.9491 | 0.9495 | 0.9491 | |
|
| 0.3641 | 7.0 | 637 | 0.2560 | 0.9464 | 0.9464 | 0.9465 | 0.9464 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.1 |
|
- Transformers 4.41.2 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |