|
--- |
|
library_name: py-feat |
|
pipeline_tag: image-feature-extraction |
|
license: apache-2.0 |
|
language: |
|
- en |
|
--- |
|
|
|
|
|
|
|
# MP_FaceMesh_V2 |
|
|
|
## Model Description |
|
MP_FaceMesh_V2 is a pytorch port of tensorfolow [FaceMeshV2](https://ai.google.dev/edge/mediapipe/solutions/vision/face_landmarker/index) model from Google's [mediapipe](https://github.com/google-ai-edge/mediapipe) library. |
|
The model takes a cropped 2D face with 25% margin on each side resized to 256 x 256 pixels and outputs a dense 473 landmark coordinates in a 3D (x,y,z) coordinate space. |
|
|
|
The original tensorflow model was ported to ONNX and then to pytorch using [onnx2torch](https://github.com/ENOT-AutoDL/onnx2torch). Currently, we are serializing the converted model, which requires onnx2torch as a dependency. |
|
|
|
See the mediapipe [model card](https://storage.googleapis.com/mediapipe-assets/Model%20Card%20Blendshape%20V2.pdf) for more details. |
|
|
|
## Model Details |
|
- **Model Type**: Convolutional Neural Network (MobileNetV2-like) |
|
- **Framework**: pytorch |
|
|
|
## Model Sources |
|
- **Repository**: [GitHub Repository](https://github.com/cosanlab/py-feat) |
|
- **Model Card**: [Mediapipe FaceMesh model card](https://storage.googleapis.com/mediapipe-assets/Model%20Card%20MediaPipe%20Face%20Mesh%20V2.pdf) |
|
- **Paper**: [Attention Mesh: High-fidelity Face Mesh Prediction in Real-time](https://arxiv.org/abs/2006.10962) |
|
|
|
## Citation |
|
If you use the mp_facemesh_v2 model in your research or application, please cite the following paper: |
|
|
|
Grishchenko, I., Ablavatski, A., Kartynnik, Y., Raveendran, K., & Grundmann, M. (2020). Attention mesh: High-fidelity face mesh prediction in real-time. arXiv preprint arXiv:2006.10962. |
|
|
|
``` |
|
@misc{grishchenko2020attentionmeshhighfidelityface, |
|
title={Attention Mesh: High-fidelity Face Mesh Prediction in Real-time}, |
|
author={Ivan Grishchenko and Artsiom Ablavatski and Yury Kartynnik and Karthik Raveendran and Matthias Grundmann}, |
|
year={2020}, |
|
eprint={2006.10962}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV}, |
|
url={https://arxiv.org/abs/2006.10962}, |
|
} |
|
``` |
|
|
|
## Example Useage |
|
|
|
```python |
|
import torch |
|
from huggingface_hub import hf_hub_download |
|
|
|
device = 'cpu' |
|
|
|
# Load model and weights |
|
landmark_model_file = hf_hub_download(repo_id='py-feat/mp_facemesh_v2', filename="face_landmarks_detector_Nx3x256x256_onnx.pth") |
|
landmark_detector = torch.load(landmark_model_file, map_location=device, weights_only=False) |
|
landmark_detector.eval() |
|
landmark_detector.to(device) |
|
|
|
|
|
# Test model |
|
face_image = "path/to/your/test_image.jpg" # Replace with your extracted face image that is [224, 224] |
|
|
|
# Extract Landmarks |
|
landmark_results = landmark_detector(torch.tensor(face_image).to(device)) |
|
|
|
``` |