metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- PolyAI/minds14
metrics:
- wer
model-index:
- name: whisper-tiny-en-US
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: PolyAI/minds14
type: PolyAI/minds14
config: en-AU
split: train
args: en-AU
metrics:
- name: Wer
type: wer
value: 0.20146619603584034
whisper-tiny-en-US
This model is a fine-tuned version of openai/whisper-tiny on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set:
- Loss: 0.6756
- Wer Ortho: 0.2044
- Wer: 0.2015
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 4000
Training results
Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
---|---|---|---|---|---|
0.0007 | 17.86 | 500 | 0.5138 | 0.1941 | 0.1920 |
0.0002 | 35.71 | 1000 | 0.5565 | 0.1958 | 0.1936 |
0.0001 | 53.57 | 1500 | 0.5851 | 0.1981 | 0.1958 |
0.0001 | 71.43 | 2000 | 0.6081 | 0.2030 | 0.1998 |
0.0 | 89.29 | 2500 | 0.6273 | 0.2038 | 0.2009 |
0.0 | 107.14 | 3000 | 0.6441 | 0.2021 | 0.1996 |
0.0 | 125.0 | 3500 | 0.6602 | 0.2035 | 0.2007 |
0.0 | 142.86 | 4000 | 0.6756 | 0.2044 | 0.2015 |
Framework versions
- Transformers 4.31.0.dev0
- Pytorch 1.12.1+cu116
- Datasets 2.4.0
- Tokenizers 0.12.1