pszemraj commited on
Commit
c1a36ec
1 Parent(s): 2d11f6b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -2
README.md CHANGED
@@ -11,7 +11,7 @@ metrics:
11
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
  should probably proofread and complete it, then remove this comment. -->
13
 
14
- # HC3-textgen-qa-pythia-6.9b-deduped-r1
15
 
16
  This model is a fine-tuned version of [EleutherAI/pythia-6.9b-deduped](https://huggingface.co/EleutherAI/pythia-6.9b-deduped) on the pszemraj/HC3-textgen-qa dataset.
17
  It achieves the following results on the evaluation set:
@@ -22,10 +22,41 @@ It achieves the following results on the evaluation set:
22
 
23
  Text generation model trained on the HC3 text data of human questions + chatGPT answers.
24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
  ## Intended uses & limitations
27
 
28
- More information needed
 
29
 
30
  ## Training and evaluation data
31
 
 
11
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
  should probably proofread and complete it, then remove this comment. -->
13
 
14
+ # pythia-6.9b-deduped for general QA
15
 
16
  This model is a fine-tuned version of [EleutherAI/pythia-6.9b-deduped](https://huggingface.co/EleutherAI/pythia-6.9b-deduped) on the pszemraj/HC3-textgen-qa dataset.
17
  It achieves the following results on the evaluation set:
 
22
 
23
  Text generation model trained on the HC3 text data of human questions + chatGPT answers.
24
 
25
+ ### Usage
26
+
27
+ Install necessary packages for inference (_unless you have a big boi GPU_)
28
+ ```bash
29
+ pip install -U -q transformers bitsandbytes accelerate
30
+ ```
31
+
32
+ Basic inference example:
33
+
34
+ ```python
35
+ from transformers import AutoTokenizer, AutoModelForCausalLM
36
+
37
+ tokenizer = AutoTokenizer.from_pretrained("pszemraj/pythia-6.9b-HC3")
38
+
39
+ model = AutoModelForCausalLM.from_pretrained(
40
+ "pszemraj/pythia-6.9b-HC3", load_in_8bit=True, device_map="auto"
41
+ )
42
+
43
+ prompt = "I was wondering how much wood a woodchuck could chuck? <answer>"
44
+ inputs = tokenizer(prompt, return_tensors="pt")
45
+ inputs = inputs.to("cuda")
46
+ outputs = model.generate(**inputs, max_new_tokens=300)
47
+ result = tokenizer.batch_decode(outputs, skip_special_tokens=True)
48
+
49
+ import pprint as pp
50
+
51
+ pp.pprint(result[0])
52
+ ```
53
+
54
+ The defautl `GenerationConfig` uses contrastive search with `top_k=4` and `penalty_alpha=0.6`. For more information on inference and parameters to use, see [the transformers docs](https://huggingface.co/docs/transformers/generation_strategies#decoding-strategies).
55
 
56
  ## Intended uses & limitations
57
 
58
+ - **Intended use:** research/exploration into comparing RLHF tuning vs. "guided"/specific tuning on "quality" datasets/responses of _"what the human would want as answer anyway"_
59
+ - This is not trained/fine-tuned with RLHF and therefore will not be as helpful/generalizable/safe as chatGPT.
60
 
61
  ## Training and evaluation data
62