pszemraj commited on
Commit
bbfbf2d
1 Parent(s): 115e7fc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -429,7 +429,7 @@ model-index:
429
  <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
430
  </a>
431
 
432
- The Longformer Encoder-Decoder (LED) for Narrative-Esque Long Text Summarization is a model I developed, designed to condense extensive technical, academic, and narrative content.
433
 
434
  ## Key Features and Use Cases
435
 
@@ -438,7 +438,7 @@ The Longformer Encoder-Decoder (LED) for Narrative-Esque Long Text Summarization
438
  - High capacity: Handles up to 16,384 tokens per batch.
439
  - demos: try it out in the notebook linked above or in the [demo on Spaces](https://huggingface.co/spaces/pszemraj/summarize-long-text)
440
 
441
- > **Note:** The API is configured to generate a maximum of ~96 tokens due to inference timeout constraints. For better results, use the Python approach detailed below.
442
 
443
  ## Training Details
444
 
@@ -448,7 +448,7 @@ Model checkpoint: [`pszemraj/led-base-16384-finetuned-booksum`](https://huggingf
448
 
449
  ## Other Related Checkpoints
450
 
451
- Apart from the LED-based model, I have also fine-tuned other models on `kmfoda/booksum`:
452
 
453
  - [Long-T5-tglobal-base](https://huggingface.co/pszemraj/long-t5-tglobal-base-16384-book-summary)
454
  - [BigBird-Pegasus-Large-K](https://huggingface.co/pszemraj/bigbird-pegasus-large-K-booksum)
@@ -524,6 +524,6 @@ print(f"summary: {out_str}")
524
 
525
  Currently implemented interfaces include a Python API, a Command-Line Interface (CLI), and a shareable demo/web UI.
526
 
527
- For detailed explanations and documentation, check the [README](https://github.com/pszemraj/textsum) or the [wiki](https://github.com/pszemraj/textsum/wiki.
528
 
529
  ---
 
429
  <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
430
  </a>
431
 
432
+ The Longformer Encoder-Decoder (LED) for Narrative-Esque Long Text Summarization is a model I fine-tuned, designed to condense extensive technical, academic, and narrative content in a fairly generalizable banner.
433
 
434
  ## Key Features and Use Cases
435
 
 
438
  - High capacity: Handles up to 16,384 tokens per batch.
439
  - demos: try it out in the notebook linked above or in the [demo on Spaces](https://huggingface.co/spaces/pszemraj/summarize-long-text)
440
 
441
+ > **Note:** The API widget has a max length of ~96 tokens due to inference timeout constraints.
442
 
443
  ## Training Details
444
 
 
448
 
449
  ## Other Related Checkpoints
450
 
451
+ This model is the smallest/fastest booksum-tuned model I have worked on. If you're looking for higher quality summaries, check out:
452
 
453
  - [Long-T5-tglobal-base](https://huggingface.co/pszemraj/long-t5-tglobal-base-16384-book-summary)
454
  - [BigBird-Pegasus-Large-K](https://huggingface.co/pszemraj/bigbird-pegasus-large-K-booksum)
 
524
 
525
  Currently implemented interfaces include a Python API, a Command-Line Interface (CLI), and a shareable demo/web UI.
526
 
527
+ For detailed explanations and documentation, check the [README](https://github.com/pszemraj/textsum) or the [wiki](https://github.com/pszemraj/textsum/wiki)
528
 
529
  ---