Commit
•
65e5f44
1
Parent(s):
9a6c586
Add verifyToken field to verify evaluation results are produced by Hugging Face's automatic model evaluator
Browse filesBeep boop, I am a bot from Hugging Face's automatic model evaluator 👋! We've added a new `verifyToken` field to your evaluation results to verify that they are produced by the model evaluator. Accept this PR to ensure that your results remain listed as **verified** on the [Hub leaderboard](https://huggingface.co/spaces/autoevaluate/leaderboards).
README.md
CHANGED
@@ -1,4 +1,7 @@
|
|
1 |
---
|
|
|
|
|
|
|
2 |
tags:
|
3 |
- summarization
|
4 |
- led
|
@@ -7,9 +10,6 @@ tags:
|
|
7 |
- booksum
|
8 |
- long-document
|
9 |
- long-form
|
10 |
-
license:
|
11 |
-
- apache-2.0
|
12 |
-
- bsd-3-clause
|
13 |
datasets:
|
14 |
- kmfoda/booksum
|
15 |
metrics:
|
@@ -28,39 +28,38 @@ widget:
|
|
28 |
deviation of the average recurrence interval, the more specific could be the long
|
29 |
term prediction of a future mainshock.
|
30 |
example_title: earthquakes
|
31 |
-
- text:
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
\ this function space (Section 5)."
|
64 |
example_title: scientific paper
|
65 |
- text: ' the big variety of data coming from diverse sources is one of the key properties
|
66 |
of the big data phenomenon. It is, therefore, beneficial to understand how data
|
@@ -105,50 +104,62 @@ widget:
|
|
105 |
in their business An important area of data analytics on the edge of corporate
|
106 |
IT and the Internet is Web Analytics.'
|
107 |
example_title: data science textbook
|
108 |
-
- text:
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
example_title: bigbird blog intro
|
153 |
- text: 'The majority of available text summarization datasets include short-form
|
154 |
source documents that lack long-range causal and temporal dependencies, and often
|
@@ -186,30 +197,36 @@ model-index:
|
|
186 |
config: kmfoda--booksum
|
187 |
split: test
|
188 |
metrics:
|
189 |
-
-
|
190 |
-
type: rouge
|
191 |
value: 33.4536
|
|
|
192 |
verified: true
|
193 |
-
|
194 |
-
|
195 |
value: 5.2232
|
|
|
196 |
verified: true
|
197 |
-
|
198 |
-
|
199 |
value: 16.2044
|
|
|
200 |
verified: true
|
201 |
-
|
202 |
-
|
203 |
value: 29.9765
|
|
|
204 |
verified: true
|
205 |
-
|
206 |
-
|
207 |
value: 3.1985862255096436
|
|
|
208 |
verified: true
|
209 |
-
|
210 |
-
|
211 |
value: 191.9783
|
|
|
212 |
verified: true
|
|
|
213 |
- task:
|
214 |
type: summarization
|
215 |
name: Summarization
|
@@ -219,30 +236,36 @@ model-index:
|
|
219 |
config: samsum
|
220 |
split: test
|
221 |
metrics:
|
222 |
-
-
|
223 |
-
|
224 |
-
|
225 |
verified: true
|
226 |
-
|
227 |
-
|
228 |
value: 10.0781
|
|
|
229 |
verified: true
|
230 |
-
|
231 |
-
|
232 |
value: 23.6331
|
|
|
233 |
verified: true
|
234 |
-
|
235 |
-
|
236 |
value: 28.7831
|
|
|
237 |
verified: true
|
238 |
-
|
239 |
-
|
240 |
value: 2.903024673461914
|
|
|
241 |
verified: true
|
242 |
-
|
243 |
-
|
244 |
value: 60.7411
|
|
|
245 |
verified: true
|
|
|
246 |
- task:
|
247 |
type: summarization
|
248 |
name: Summarization
|
@@ -252,30 +275,36 @@ model-index:
|
|
252 |
config: 3.0.0
|
253 |
split: test
|
254 |
metrics:
|
255 |
-
-
|
256 |
-
type: rouge
|
257 |
value: 30.5046
|
|
|
258 |
verified: true
|
259 |
-
|
260 |
-
|
261 |
value: 13.2577
|
|
|
262 |
verified: true
|
263 |
-
|
264 |
-
|
265 |
value: 19.0306
|
|
|
266 |
verified: true
|
267 |
-
|
268 |
-
|
269 |
value: 28.3421
|
|
|
270 |
verified: true
|
271 |
-
|
272 |
-
|
273 |
value: 3.9484164714813232
|
|
|
274 |
verified: true
|
275 |
-
|
276 |
-
|
277 |
value: 231.0762
|
|
|
278 |
verified: true
|
|
|
279 |
- task:
|
280 |
type: summarization
|
281 |
name: Summarization
|
@@ -285,30 +314,36 @@ model-index:
|
|
285 |
config: default
|
286 |
split: test
|
287 |
metrics:
|
288 |
-
-
|
289 |
-
type: rouge
|
290 |
value: 36.8502
|
|
|
291 |
verified: true
|
292 |
-
|
293 |
-
|
294 |
value: 15.9147
|
|
|
295 |
verified: true
|
296 |
-
|
297 |
-
|
298 |
value: 23.4762
|
|
|
299 |
verified: true
|
300 |
-
|
301 |
-
|
302 |
value: 30.9597
|
|
|
303 |
verified: true
|
304 |
-
|
305 |
-
|
306 |
value: 3.878790855407715
|
|
|
307 |
verified: true
|
308 |
-
|
309 |
-
|
310 |
value: 131.3622
|
|
|
311 |
verified: true
|
|
|
312 |
- task:
|
313 |
type: summarization
|
314 |
name: Summarization
|
@@ -318,30 +353,36 @@ model-index:
|
|
318 |
config: y
|
319 |
split: test
|
320 |
metrics:
|
321 |
-
-
|
322 |
-
type: rouge
|
323 |
value: 33.7585
|
|
|
324 |
verified: true
|
325 |
-
|
326 |
-
|
327 |
value: 9.4101
|
|
|
328 |
verified: true
|
329 |
-
|
330 |
-
|
331 |
value: 18.8927
|
|
|
332 |
verified: true
|
333 |
-
|
334 |
-
|
335 |
value: 28.5051
|
|
|
336 |
verified: true
|
337 |
-
|
338 |
-
|
339 |
value: 5.162865161895752
|
|
|
340 |
verified: true
|
341 |
-
|
342 |
-
|
343 |
value: 222.6626
|
|
|
344 |
verified: true
|
|
|
345 |
- task:
|
346 |
type: summarization
|
347 |
name: Summarization
|
@@ -351,30 +392,36 @@ model-index:
|
|
351 |
config: default
|
352 |
split: test
|
353 |
metrics:
|
354 |
-
-
|
355 |
-
type: rouge
|
356 |
value: 38.7332
|
|
|
357 |
verified: true
|
358 |
-
|
359 |
-
|
360 |
value: 11.0072
|
|
|
361 |
verified: true
|
362 |
-
|
363 |
-
|
364 |
value: 18.6018
|
|
|
365 |
verified: true
|
366 |
-
|
367 |
-
|
368 |
value: 34.5911
|
|
|
369 |
verified: true
|
370 |
-
|
371 |
-
|
372 |
value: 3.5744354724884033
|
|
|
373 |
verified: true
|
374 |
-
|
375 |
-
|
376 |
value: 192.0014
|
|
|
377 |
verified: true
|
|
|
378 |
---
|
379 |
|
380 |
# Longformer Encoder-Decoder (LED) for Narrative-Esque Long Text Summarization
|
|
|
1 |
---
|
2 |
+
license:
|
3 |
+
- apache-2.0
|
4 |
+
- bsd-3-clause
|
5 |
tags:
|
6 |
- summarization
|
7 |
- led
|
|
|
10 |
- booksum
|
11 |
- long-document
|
12 |
- long-form
|
|
|
|
|
|
|
13 |
datasets:
|
14 |
- kmfoda/booksum
|
15 |
metrics:
|
|
|
28 |
deviation of the average recurrence interval, the more specific could be the long
|
29 |
term prediction of a future mainshock.
|
30 |
example_title: earthquakes
|
31 |
+
- text: ' A typical feed-forward neural field algorithm. Spatiotemporal coordinates
|
32 |
+
are fed into a neural network that predicts values in the reconstructed domain.
|
33 |
+
Then, this domain is mapped to the sensor domain where sensor measurements are
|
34 |
+
available as supervision. Class and Section Problems Addressed Generalization
|
35 |
+
(Section 2) Inverse problems, ill-posed problems, editability; symmetries. Hybrid
|
36 |
+
Representations (Section 3) Computation & memory efficiency, representation capacity,
|
37 |
+
editability: Forward Maps (Section 4) Inverse problems Network Architecture (Section
|
38 |
+
5) Spectral bias, integration & derivatives. Manipulating Neural Fields (Section
|
39 |
+
6) Edit ability, constraints, regularization. Table 2: The five classes of techniques
|
40 |
+
in the neural field toolbox each addresses problems that arise in learning, inference,
|
41 |
+
and control. (Section 3). We can supervise reconstruction via differentiable forward
|
42 |
+
maps that transform Or project our domain (e.g, 3D reconstruction via 2D images;
|
43 |
+
Section 4) With appropriate network architecture choices, we can overcome neural
|
44 |
+
network spectral biases (blurriness) and efficiently compute derivatives and integrals
|
45 |
+
(Section 5). Finally, we can manipulate neural fields to add constraints and regularizations,
|
46 |
+
and to achieve editable representations (Section 6). Collectively, these classes
|
47 |
+
constitute a ''toolbox'' of techniques to help solve problems with neural fields
|
48 |
+
There are three components in a conditional neural field: (1) An encoder or inference
|
49 |
+
function € that outputs the conditioning latent variable 2 given an observation
|
50 |
+
0 E(0) =2. 2 is typically a low-dimensional vector, and is often referred to aS
|
51 |
+
a latent code Or feature code_ (2) A mapping function 4 between Z and neural field
|
52 |
+
parameters O: Y(z) = O; (3) The neural field itself $. The encoder € finds the
|
53 |
+
most probable z given the observations O: argmaxz P(2/0). The decoder maximizes
|
54 |
+
the inverse conditional probability to find the most probable 0 given Z: arg-
|
55 |
+
max P(Olz). We discuss different encoding schemes with different optimality guarantees
|
56 |
+
(Section 2.1.1), both global and local conditioning (Section 2.1.2), and different
|
57 |
+
mapping functions Y (Section 2.1.3) 2. Generalization Suppose we wish to estimate
|
58 |
+
a plausible 3D surface shape given a partial or noisy point cloud. We need a suitable
|
59 |
+
prior over the sur- face in its reconstruction domain to generalize to the partial
|
60 |
+
observations. A neural network expresses a prior via the function space of its
|
61 |
+
architecture and parameters 0, and generalization is influenced by the inductive
|
62 |
+
bias of this function space (Section 5).'
|
|
|
63 |
example_title: scientific paper
|
64 |
- text: ' the big variety of data coming from diverse sources is one of the key properties
|
65 |
of the big data phenomenon. It is, therefore, beneficial to understand how data
|
|
|
104 |
in their business An important area of data analytics on the edge of corporate
|
105 |
IT and the Internet is Web Analytics.'
|
106 |
example_title: data science textbook
|
107 |
+
- text: 'Transformer-based models have shown to be very useful for many NLP tasks.
|
108 |
+
However, a major limitation of transformers-based models is its O(n^2)O(n 2) time
|
109 |
+
& memory complexity (where nn is sequence length). Hence, it''s computationally
|
110 |
+
very expensive to apply transformer-based models on long sequences n > 512n>512.
|
111 |
+
Several recent papers, e.g. Longformer, Performer, Reformer, Clustered attention
|
112 |
+
try to remedy this problem by approximating the full attention matrix. You can
|
113 |
+
checkout 🤗''s recent blog post in case you are unfamiliar with these models.
|
114 |
+
|
115 |
+
BigBird (introduced in paper) is one of such recent models to address this issue.
|
116 |
+
BigBird relies on block sparse attention instead of normal attention (i.e. BERT''s
|
117 |
+
attention) and can handle sequences up to a length of 4096 at a much lower computational
|
118 |
+
cost compared to BERT. It has achieved SOTA on various tasks involving very long
|
119 |
+
sequences such as long documents summarization, question-answering with long contexts.
|
120 |
+
|
121 |
+
BigBird RoBERTa-like model is now available in 🤗Transformers. The goal of this
|
122 |
+
post is to give the reader an in-depth understanding of big bird implementation
|
123 |
+
& ease one''s life in using BigBird with 🤗Transformers. But, before going into
|
124 |
+
more depth, it is important to remember that the BigBird''s attention is an approximation
|
125 |
+
of BERT''s full attention and therefore does not strive to be better than BERT''s
|
126 |
+
full attention, but rather to be more efficient. It simply allows to apply transformer-based
|
127 |
+
models to much longer sequences since BERT''s quadratic memory requirement quickly
|
128 |
+
becomes unbearable. Simply put, if we would have ∞ compute & ∞ time, BERT''s attention
|
129 |
+
would be preferred over block sparse attention (which we are going to discuss
|
130 |
+
in this post).
|
131 |
+
|
132 |
+
If you wonder why we need more compute when working with longer sequences, this
|
133 |
+
blog post is just right for you!
|
134 |
+
|
135 |
+
Some of the main questions one might have when working with standard BERT-like
|
136 |
+
attention include:
|
137 |
+
|
138 |
+
Do all tokens really have to attend to all other tokens? Why not compute attention
|
139 |
+
only over important tokens? How to decide what tokens are important? How to attend
|
140 |
+
to just a few tokens in a very efficient way? In this blog post, we will try to
|
141 |
+
answer those questions.
|
142 |
+
|
143 |
+
What tokens should be attended to? We will give a practical example of how attention
|
144 |
+
works by considering the sentence ''BigBird is now available in HuggingFace for
|
145 |
+
extractive question answering''. In BERT-like attention, every word would simply
|
146 |
+
attend to all other tokens.
|
147 |
+
|
148 |
+
Let''s think about a sensible choice of key tokens that a queried token actually
|
149 |
+
only should attend to by writing some pseudo-code. Will will assume that the token
|
150 |
+
available is queried and build a sensible list of key tokens to attend to.
|
151 |
+
|
152 |
+
>>> # let''s consider following sentence as an example >>> example = [''BigBird'',
|
153 |
+
''is'', ''now'', ''available'', ''in'', ''HuggingFace'', ''for'', ''extractive'',
|
154 |
+
''question'', ''answering'']
|
155 |
+
|
156 |
+
>>> # further let''s assume, we''re trying to understand the representation of
|
157 |
+
''available'' i.e. >>> query_token = ''available'' >>> # We will initialize an
|
158 |
+
empty `set` and fill up the tokens of our interest as we proceed in this section.
|
159 |
+
>>> key_tokens = [] # => currently ''available'' token doesn''t have anything
|
160 |
+
to attend Nearby tokens should be important because, in a sentence (sequence of
|
161 |
+
words), the current word is highly dependent on neighboring past & future tokens.
|
162 |
+
This intuition is the idea behind the concept of sliding attention.'
|
163 |
example_title: bigbird blog intro
|
164 |
- text: 'The majority of available text summarization datasets include short-form
|
165 |
source documents that lack long-range causal and temporal dependencies, and often
|
|
|
197 |
config: kmfoda--booksum
|
198 |
split: test
|
199 |
metrics:
|
200 |
+
- type: rouge
|
|
|
201 |
value: 33.4536
|
202 |
+
name: ROUGE-1
|
203 |
verified: true
|
204 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmEzYjNkZTUxZjA0YTdmNTJkMjVkMTg2NDRjNTkzN2ZlNDlhNTBhMWQ5MTNiYWE4Mzg5YTMyMTM5YmZjNDI3OSIsInZlcnNpb24iOjF9.OWjM_HCQLQHK4AV4em70QGT3lrVk25WyZdcXA8ywest_XSx9KehJbsIMDKtXxOOMwxvkogKnScy4tbskYMQqDg
|
205 |
+
- type: rouge
|
206 |
value: 5.2232
|
207 |
+
name: ROUGE-2
|
208 |
verified: true
|
209 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTVhOTdjZjc5YTdhMmVjZGE1NTA5MmJkYmM3Y2U3OGVlMjZmOGVlMTUzYTdiZGRhM2NmZjAzMjFkZjlkMzJmOCIsInZlcnNpb24iOjF9.qOlwWEe8dfBunmwImhbkcxzUW3ml-ESsuxjWN1fjn_o36zaUlDqlrXovMcL9GX9mVdvZDhx9W82rAR8h6410AQ
|
210 |
+
- type: rouge
|
211 |
value: 16.2044
|
212 |
+
name: ROUGE-L
|
213 |
verified: true
|
214 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzkwOTEwYjkxYzlhMWE4ZjhlZDVjZWEwMWY2YzgwY2Q2YzJkYWFhMTQ4ODFlZmVkY2I1OWVhMTFmZThlOGY4NCIsInZlcnNpb24iOjF9.fJSr9wRQ07YIPMpb2_xv14EkHRz3gsPdZH-4LzpdviLOjVhlK1Y4gSZjp3PTEbu4Hua0umvNTMrhii8hp3DFBA
|
215 |
+
- type: rouge
|
216 |
value: 29.9765
|
217 |
+
name: ROUGE-LSUM
|
218 |
verified: true
|
219 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYWRkYjcwMTYwODRjN2E4MDliZWQyNjczNDU1NGZkMDRkNDlhNDA1YzZiOTk1MWJjZDkyMDg3MGMxYmVhOTA5MyIsInZlcnNpb24iOjF9.tUkVmhT0bl9eY_BzAzdzEI1lo3Iyfv6HBrrsVsRHqPFh4C0Q9Zk3IXbR-F_gMDx9vDiZIkpfG7SfsIZXwhDkBw
|
220 |
+
- type: loss
|
221 |
value: 3.1985862255096436
|
222 |
+
name: loss
|
223 |
verified: true
|
224 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2RmYzQ1NTFiYjk3YTZjMTI3NDJlMDY0MTgyZDZlZDRmZDcwOWE1YjU0OGYyZTJlY2RkZTEzZDFlNDk2ZjgyNSIsInZlcnNpb24iOjF9.Pc5Tfu8IXYeB5ETK2JMIL4gpRIvvYXVS6w1AZdfq9dD1dm9Te2xaNhzGBHviqgEfFI9APNSJB28wna1OpYP0Dg
|
225 |
+
- type: gen_len
|
226 |
value: 191.9783
|
227 |
+
name: gen_len
|
228 |
verified: true
|
229 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNmMyMDI5MzFlNzNjODNmOWQ0ZTM3MzVkNTNkYzIxNTIwZDQzMTU2MTM0YjYzNjJiMGRhOTQ0OWFhN2U4N2NjYyIsInZlcnNpb24iOjF9.AfsX-O1YwfbPxUwAD7rd1Ub7SXth7FFpTo2iNSOUWFhYmDUECkf6qtJ5pVHXXZwnpidAlfPTPg-5y3dx_BBGCA
|
230 |
- task:
|
231 |
type: summarization
|
232 |
name: Summarization
|
|
|
236 |
config: samsum
|
237 |
split: test
|
238 |
metrics:
|
239 |
+
- type: rouge
|
240 |
+
value: 32
|
241 |
+
name: ROUGE-1
|
242 |
verified: true
|
243 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmNhZjk3NjFlZDBhZjU2YzgzOTdhZTNkZjBkYjNjZDk2YjE2NDBmMDhiY2Y5M2EwNGI5Njk1NWU3ZDYyMzk2ZSIsInZlcnNpb24iOjF9.htkMQQLjIeFFjnpAJOwwxAdgzGZX10Und6RONubeeydXqQqb562EHqAw0K1ZlqltC4GBGKK3xslGOWXQ5AV6CA
|
244 |
+
- type: rouge
|
245 |
value: 10.0781
|
246 |
+
name: ROUGE-2
|
247 |
verified: true
|
248 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWYzZDA1YmU5YTkzMjEwN2IzMTNhZmZmOTU2ZGUyNzdlNWQ0OGQ1Y2UxOGQ0NWUyOWVmZmZkYzFkODE3OTliNiIsInZlcnNpb24iOjF9.WVE3fmYLkOW32_neYYj4TNJ5lhrG-27DnoJd4YDUzpHYvGWGoFU9CUuIFraQFnojRr02f3KqVY7T33DG5mpzBg
|
249 |
+
- type: rouge
|
250 |
value: 23.6331
|
251 |
+
name: ROUGE-L
|
252 |
verified: true
|
253 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTYyOTE0ODY2Mjk0YTk5ZTY5NTZkM2JkOGZhNjQ3NjNiMjVhNTc4ZmMwYzg1ZGIxOTA2MDQxNmU3Yjc5YWY0MSIsInZlcnNpb24iOjF9.yQ8WpdsyGKSuTG8MxHXqujEAYOIrt_hoUbuHc8HnS-GjS9xJ-rKO6pP6HYbi0LC9Xqh2_QPveCpNqr9ZQMGRCg
|
254 |
+
- type: rouge
|
255 |
value: 28.7831
|
256 |
+
name: ROUGE-LSUM
|
257 |
verified: true
|
258 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzVkMDNlODA4NWI3OGI1OGFlNjFlNWE4YzY5ZDE1NDdhMjIwYjlkNDIxNDZjOGRiNTI1MGJkMmE0YWZiMDNhMiIsInZlcnNpb24iOjF9.qoxn2g70rbbX6sVCvm_cXzvYZf1UdTDU44vvEVdZL-4h36cJRCOx5--O1tZEVdyvlMVi-tYz1RSxLRwQd72FAw
|
259 |
+
- type: loss
|
260 |
value: 2.903024673461914
|
261 |
+
name: loss
|
262 |
verified: true
|
263 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGM2M2NlY2Q3NjYxY2EyM2FkYmM5OGVhYzcyNjA3ZTFlYzc3M2M2ODNmNWVjNjZmMGNiODc4MWY5NWE2ZDMyNyIsInZlcnNpb24iOjF9.pC4UK75LbyVFFm0-fcStMtdQhbuHE37wkZHoVbSQOYSyxjI8yA46bQkPmgg5znby9FK_wIgGxC_4KOdEeN4jBw
|
264 |
+
- type: gen_len
|
265 |
value: 60.7411
|
266 |
+
name: gen_len
|
267 |
verified: true
|
268 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWEwMDFiYjgyNzRhZDVmOWIzYzZlZWU5OTFkYmU4YzI2Mjk2OTg1ZDVlNzU0YzNhOWI1MmU2NTAxZWUzZmFlOCIsInZlcnNpb24iOjF9.Zepow4AFj1sQ6zyJGoy_Dl4ICKRtzZI2nVYWlTsDnGrBDT42ak9mFUuw-BjHR8dEVHJKmOZlLk6GJ09bL7tGAA
|
269 |
- task:
|
270 |
type: summarization
|
271 |
name: Summarization
|
|
|
275 |
config: 3.0.0
|
276 |
split: test
|
277 |
metrics:
|
278 |
+
- type: rouge
|
|
|
279 |
value: 30.5046
|
280 |
+
name: ROUGE-1
|
281 |
verified: true
|
282 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmVmN2NkZDE1ZDAzZjhiYWJkNWJjZDIwNGNkY2EzOTVlNzA3OTZlYmEyNDE5NzQwNmI4NTdmM2M3YzlmMGJiYSIsInZlcnNpb24iOjF9.UbgnlgTUEd2yhULHeNKHQaVtAYwE3CijYGZc5mZSZkwXGIwJxwkDimhyo6XxMr8iCsu_hQLEsEtN9CWTn0SrDw
|
283 |
+
- type: rouge
|
284 |
value: 13.2577
|
285 |
+
name: ROUGE-2
|
286 |
verified: true
|
287 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzU5MTg1OGJkYzAwNmUwMDdmYTBhODBhYjkyOTdjODRjMDJiNjU0ZjkzYzYyYWJhZTA1YjQ2NTliNWUyYmY3YiIsInZlcnNpb24iOjF9.fuvr3vrY8CSYpSluLeMz9VnxysWSlFFRMnnR3ZKZOxlh7_UNwtlMMHWCH6Yfy65LzglLNsRSnWNrwn5OXP4vAw
|
288 |
+
- type: rouge
|
289 |
value: 19.0306
|
290 |
+
name: ROUGE-L
|
291 |
verified: true
|
292 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzMxYmY1ZmRlYzA4NzNkZDAzZjc0MzhkY2E4YTRiMmI0M2IwNDIwNzdiOWIzYTM1YTBmNWJkOWE3ODA3ZDM5NyIsInZlcnNpb24iOjF9.y-vzjHeER3iqyvSrjHUvy6Z_hom6aV0SRNV5CiB2efPmS7cL9nifoqpF2MJtip9RVn5nuuavlm-e3e2K0S5yDw
|
293 |
+
- type: rouge
|
294 |
value: 28.3421
|
295 |
+
name: ROUGE-LSUM
|
296 |
verified: true
|
297 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGJjYTdhMDIxYWVhYzM0MDRkYTM4MTI4YmRhOGEwYjE5OGU1NWNiYjIzOTdkM2FlNTUxNTJiNzBmNWQ1NDgyOSIsInZlcnNpb24iOjF9.32seuR1CHAtUR_UCCx1nTiv-u88ETqypzWt5iItexmFTlVkZjPw7whgM7KXtgJsPdWfdcClYif5Qpnbq-NycDA
|
298 |
+
- type: loss
|
299 |
value: 3.9484164714813232
|
300 |
+
name: loss
|
301 |
verified: true
|
302 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTgyMzJhNjY1OTU4YmVmMzVlYmI1N2IzZTdiNzYwMTA4YzRlZjY1ZjRhN2IxNTE5NjhkYjA1ZmMzMzVhNDk5NyIsInZlcnNpb24iOjF9.Cn8b20pksnlZF8LaJPxKrmrPMDIJ4CAPfjGifB86RaA6pLSTyY_wYsqEb2JfAczViquk4HtV8MvLnv0cioLODQ
|
303 |
+
- type: gen_len
|
304 |
value: 231.0762
|
305 |
+
name: gen_len
|
306 |
verified: true
|
307 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTIxOTMyZDlhNjYwOTY5M2Q0ZTZiNWQ5YzAxMjE1OTllOGNhNWU4MjQ0OTBhZTE5NDZjNmEzZTZlOWRiMGY5NyIsInZlcnNpb24iOjF9.QK29Zwhj8jN3hWae54-qaF7vHdh1ijSa6Mq_4LdGcG8xHLCerVGg45H9B1XClCksMadp7auOzPa8CEjxYVpyBA
|
308 |
- task:
|
309 |
type: summarization
|
310 |
name: Summarization
|
|
|
314 |
config: default
|
315 |
split: test
|
316 |
metrics:
|
317 |
+
- type: rouge
|
|
|
318 |
value: 36.8502
|
319 |
+
name: ROUGE-1
|
320 |
verified: true
|
321 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmE2ZjI4YmJkZGVjZDkzNzU5ZmI2MDYzNGZkNjE2OGM0Y2Y0Nzk1NTc1ZmUyZmFhYjIwY2RhMDVkMzQ1MWIxYyIsInZlcnNpb24iOjF9.SZjhhFkKwvRrI-Yl29psn17u1RCISsmmLVXxo2kxCjkhtMOma-EzC5YidjPDGQLb-J2nvqUworaC2pL_oeHxDQ
|
322 |
+
- type: rouge
|
323 |
value: 15.9147
|
324 |
+
name: ROUGE-2
|
325 |
verified: true
|
326 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODgwOTJhOWIyZDQ4ZDA5YWMzYTJkZWFmMzlkNWYxNTg5OGFiNzY0MTExNTgyMTdlMTQ1N2EwYWY4OGZkNWY5YyIsInZlcnNpb24iOjF9.DS-X3eA1tGhVSuUL8uSPtJMNijODF3ugaKEtBglmPqF1OQZwIwQs-NExNYP4d6Y4Pa9d-DujD5yfyl9C8HBGCw
|
327 |
+
- type: rouge
|
328 |
value: 23.4762
|
329 |
+
name: ROUGE-L
|
330 |
verified: true
|
331 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTYxNTA4YzhmYTQ0YmRjMWU5ZDliZWFhMjM4ZmUyNGUyOWJhNzA1MDBhZDliYmYyYzY3NjBmZTZlYWY3YTY3ZCIsInZlcnNpb24iOjF9.o0W7dqdz0sqMPKtJbXSRpyVNsREEUypW-bGv7TW5lfJFkijfDKhVITEClFLWu5n2tIV-sXAYxgQHDf5_hpY-Dw
|
332 |
+
- type: rouge
|
333 |
value: 30.9597
|
334 |
+
name: ROUGE-LSUM
|
335 |
verified: true
|
336 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzEzOGNiYjk4NDkxNTFmMjA5YjM1YTQzZTk2N2JiZDgxNzAxYzFlYjliZjA3NmRjMzZlNGYyODBkNTI1NzVjNiIsInZlcnNpb24iOjF9.C_hobTR0ZY958oUZcGEKj2RoPOkyfMCTznwi4mUx-bfGRRAecMyn45bWVwwRq12glk1vThDetCjOMHA6jgSDCw
|
337 |
+
- type: loss
|
338 |
value: 3.878790855407715
|
339 |
+
name: loss
|
340 |
verified: true
|
341 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNmYyOWM0YWQ0MjAxZDg5ZWQyNDk3MGUwNzdkOWIwZDc0OGJjYTU3YjZmOWY0YTljNDI0OWRlNTI0ZDMwZWEzOCIsInZlcnNpb24iOjF9.P01Jzfa-5jyMeoEqEsEluKOydNmtRtNy8YhwfJuYHVJTVDzCIfzY8b7iNfqTfKFKwKkZ4eTwmA6vmsPZeASDAw
|
342 |
+
- type: gen_len
|
343 |
value: 131.3622
|
344 |
+
name: gen_len
|
345 |
verified: true
|
346 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmJjN2Q5ZGNlZjQ2ODJiYTZlMzZmNWVmMzRlMGQ0ZTkxZWM3ZDQ4ZmQ1NmUyZjY4MTVhZGE5NDFiZTBhNDZiYSIsInZlcnNpb24iOjF9.DqYNc0ZCX_EqRi4zbSBAtb-js_JBHSWZkeGR9gSwEkJletKYFxPGZWd-B1ez88aj6PO775-qHd98xx3IWCHECQ
|
347 |
- task:
|
348 |
type: summarization
|
349 |
name: Summarization
|
|
|
353 |
config: y
|
354 |
split: test
|
355 |
metrics:
|
356 |
+
- type: rouge
|
|
|
357 |
value: 33.7585
|
358 |
+
name: ROUGE-1
|
359 |
verified: true
|
360 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2VmMGU5YWJlZWFlNjA3MDY2NTBmZWU3YWQxYTk3OGYzZmU5NmFmMTQ1NTVmNDQyZTJkNDMwY2E5NGRjMGU3MSIsInZlcnNpb24iOjF9.P6Rt9c3Xi_B-u8B1ug4paeZDoAO4ErGeNM0gELHGeOMj4XMjeSvyAW_-30cA9Wf23-0jGPOSZbN5pME4JpxfDA
|
361 |
+
- type: rouge
|
362 |
value: 9.4101
|
363 |
+
name: ROUGE-2
|
364 |
verified: true
|
365 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDA0NzUxMjIwYTFjNGQ5YTA4YjE1NGU5YWMzYjhiOTk2NWE3ZGQxNDY4YTI3ZmI0ODBjYmJkZjcwYTM2OTg2MCIsInZlcnNpb24iOjF9.23hd2SuLoX3_Rygj2ykcSQccPeFsf4yLDAgvS189jx6JNln0MVR6YI2-3Yzo5g8LJk0MCbgkOp0my-nf7nMaDw
|
366 |
+
- type: rouge
|
367 |
value: 18.8927
|
368 |
+
name: ROUGE-L
|
369 |
verified: true
|
370 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODhhMGZiZWFlNmZkYmYxZjJmODE1NWRiZjI2OGU1MTc4MDkyYjk1Mzk5ODFkYWVhY2ExNTViYjJmYzkzNWJhYiIsInZlcnNpb24iOjF9.SkKhf-l2cl2KcuC17oPrBtkBlZJaj2ujCgzRlfZy76rU9JtlW7N9bcy1ugnw-vRVUVVR6wUK08T45YorfuxqBg
|
371 |
+
- type: rouge
|
372 |
value: 28.5051
|
373 |
+
name: ROUGE-LSUM
|
374 |
verified: true
|
375 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTgzYzA0NmQ0OTZmNzJkNGZiNTdmMzFmOTljMWE3YzM0NDg2MDY1ZDY5ZTE4MmQ5YzU1ZDFiNmE2ZjkwMjRjMiIsInZlcnNpb24iOjF9.p1TQINRxMatNe77_BMnusSg1K5FOD9f1_N4TBJDjJHNhYnyQDE4pKHfK8j6fsHGg58DHVQjmm8g96SK4uMF6DA
|
376 |
+
- type: loss
|
377 |
value: 5.162865161895752
|
378 |
+
name: loss
|
379 |
verified: true
|
380 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWM1YTQ4MjVmMDkyZDI3OWJmODhmOWE2MDYyMDA4OGRmYzhiY2YzZjVmMTZkMTI4NjBlY2MwMDY3ZDE5ZjlmMyIsInZlcnNpb24iOjF9.Czh4TOG-QIqyc_-GJ3wc1TLuxc-KLwPelV5tiwEjNhZFyUZkjLH__ccOxBk9TYy2vunvh2AwdY3Mt6Fr8LhaDA
|
381 |
+
- type: gen_len
|
382 |
value: 222.6626
|
383 |
+
name: gen_len
|
384 |
verified: true
|
385 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2JjNzVkODhmOWQ5NWMwNDdlNzhkYjE5NjY3NTgwNWVmZDZlMzc4NDdmZjdlN2M2ODBkZGU5NGU0ZjMzM2Q5OCIsInZlcnNpb24iOjF9.z4hZ-uXg8PPn-THRHFrsWZpS3jgE8URk5yoLenwWtev5toTrZ2Y-DP8O30nPnzMkzA4yzo_NUKIACxoUdMqfCQ
|
386 |
- task:
|
387 |
type: summarization
|
388 |
name: Summarization
|
|
|
392 |
config: default
|
393 |
split: test
|
394 |
metrics:
|
395 |
+
- type: rouge
|
|
|
396 |
value: 38.7332
|
397 |
+
name: ROUGE-1
|
398 |
verified: true
|
399 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGViMThhNTdlZDRiMTg5NTZjNGVmOThiMjI5NDEyZDMxYjU4MTU2ZTliZjZmMzAzMmRhNDIxYjViYjZmNWYwNSIsInZlcnNpb24iOjF9.SK_1Q9WlkNhu3mfsyir1l72pddjURZvJV3mcJ4jhBxS2k2q1NAR8JT_iT8v1thLiv8NUDmDr2o9Dig4A8svDBw
|
400 |
+
- type: rouge
|
401 |
value: 11.0072
|
402 |
+
name: ROUGE-2
|
403 |
verified: true
|
404 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzkzMDU1ZGZlOWUwOGQyY2UwMWFjZTY1MDBmNzcyZGYzZTliNGVkNDZjZDVjZjA4NmE3OWVhMGIyZmE3NGE0NSIsInZlcnNpb24iOjF9.j0wvR0NPw0lqxW3ASbmBvxAbFHGikXw-Y7FjutojhzTfSs3BIs5Z8s5_h6eesvSGT5fS_qUrbnl9EEBwjrXqDg
|
405 |
+
- type: rouge
|
406 |
value: 18.6018
|
407 |
+
name: ROUGE-L
|
408 |
verified: true
|
409 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjIwNTUzN2ZhZjU5OGFhYzRmZmEwY2NkZWVjYmYzZjRjMGIxNzNjZDY5YzIyMTg2NDJkMGYxYmViNTcwOTc5NCIsInZlcnNpb24iOjF9.rD_tFYRyb-o6VX7Z52fULvP_HQjqqshqnvbjAxWjuCM9hCn1J6oh0zAASPw0k1lWiURbiMCiaxIHxe_5BN_rAQ
|
410 |
+
- type: rouge
|
411 |
value: 34.5911
|
412 |
+
name: ROUGE-LSUM
|
413 |
verified: true
|
414 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2Q4MWY3NGFhNjE5YjE5NzIyODVhNTYxNWFmZDE5NjNiZTM1M2M3ZmIwNTZiOWEyMTc2MzQ0MWQ5YTdjYThlNyIsInZlcnNpb24iOjF9.R789HgYsv_k6OrjocVi0ywx0aCRlgOKpEWUiSUDca-AfoDS8ADJBtLYoEKg1wnRlR9yWoD4vtEWdKbyOOln1CA
|
415 |
+
- type: loss
|
416 |
value: 3.5744354724884033
|
417 |
+
name: loss
|
418 |
verified: true
|
419 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzBjZTk0YWMwMzQxNDRlY2UxZDc4NTE1MmEzNDkwM2M3ZGZhNGMzNmI4ZDU2ZTVhZDkwMjNhYTkxZTIwN2E4MyIsInZlcnNpb24iOjF9.bDQ_3-CumosWKroMwBEMwKnDAj4ENQbUnbS387hU0zAY1K5g1NOy7fKBohxYZnRVolEfiuhszifUMW9zcLjqCA
|
420 |
+
- type: gen_len
|
421 |
value: 192.0014
|
422 |
+
name: gen_len
|
423 |
verified: true
|
424 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDQxZmEwYmU5MGI1ZWE5NTIyMmM1MTVlMjVjNTg4MDQyMjJhNGE5NDJhNmZiN2Y4ZDc4ZmExNjBkMjQzMjQxMyIsInZlcnNpb24iOjF9.o3WblPY-iL1vT66xPwyyi1VMPhI53qs9GJ5HsHGbglOALwZT4n2-6IRxRNcL2lLj9qUehWUKkhruUyDM5-4RBg
|
425 |
---
|
426 |
|
427 |
# Longformer Encoder-Decoder (LED) for Narrative-Esque Long Text Summarization
|