pszemraj's picture
Update README.md
2d8411f verified
|
raw
history blame
2.99 kB
metadata
license: mit
base_model: microsoft/deberta-v3-small
tags:
  - regression
model-index:
  - name: deberta-v3-small-sp500-edgar-10k-markdown-1024-vN
    results: []
datasets:
  - BEE-spoke-data/sp500-edgar-10k-markdown
language:
  - en

pszemraj/deberta-v3-small-sp500-edgar-10k

this predicts the ret column of the training dataset, given the text column.

Click to expand code example
import json
from transformers import pipeline
from huggingface_hub import hf_hub_download

model_repo_name = "pszemraj/deberta-v3-small-sp500-edgar-10k"
pipe = pipeline("text-classification", model=model_repo_name)
pipe.tokenizer.model_max_length = 1024

# Download the regression_config.json file
regression_config_path = hf_hub_download(
    repo_id=model_repo_name, filename="regression_config.json"
)
with open(regression_config_path, "r") as f:
    regression_config = json.load(f)

def inverse_scale(prediction, config):
    """apply inverse scaling to a prediction"""
    min_value, max_value = config["min_value"], config["max_value"]
    return prediction * (max_value - min_value) + min_value

def predict_with_pipeline(text, pipe, config, ndigits=5):
    result = pipe(text, truncation=True)[0] 
    scaled_score = inverse_scale(result['score'], config)
    return round(scaled_score, ndigits)

text = "This is an example text for regression prediction."

# Get predictions
predictions = predict_with_pipeline(text, pipe, regression_config)
print("Predicted Value:", predictions)

Model description

This model is a fine-tuned version of microsoft/deberta-v3-small on BEE-spoke-data/sp500-edgar-10k-markdown

It achieves the following results on the evaluation set:

  • Loss: 0.0005
  • Mse: 0.0005

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 30826
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 3.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Mse
0.0064 0.54 50 0.0006 0.0006
0.0043 1.08 100 0.0005 0.0005
0.0028 1.61 150 0.0006 0.0006
0.0025 2.15 200 0.0005 0.0005
0.0025 2.69 250 0.0005 0.0005

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.2.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.2