mmarimon commited on
Commit
3869908
1 Parent(s): cb42a89

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -27
README.md CHANGED
@@ -33,30 +33,38 @@ widget:
33
  # Catalan BERTa (roberta-base-ca) finetuned for Question Answering.
34
 
35
  ## Table of Contents
36
- - [Model Description](#model-description)
37
- - [Intended Uses and Limitations](#intended-uses-and-limitations)
38
- - [How to Use](#how-to-use)
 
 
 
 
39
  - [Training](#training)
40
- - [Training Data](#training-data)
41
- - [Training Procedure](#training-procedure)
42
  - [Evaluation](#evaluation)
43
- - [Variable and Metrics](#variable-and-metrics)
44
- - [Evaluation Results](#evaluation-results)
45
- - [Licensing Information](#licensing-information)
46
- - [Citation Information](#citation-information)
47
- - [Funding](#funding)
48
- - [Contributions](#contributions)
49
- - [Disclaimer](#disclaimer)
 
 
 
 
50
 
51
  ## Model description
52
 
53
  The **roberta-base-ca-cased-qa** is a Question Answering (QA) model for the Catalan language fine-tuned from the roberta-base-ca model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers.
54
 
55
- ## Intended Uses and Limitations
56
 
57
  **roberta-base-ca-cased-qa** model can be used for extractive question answering. The model is limited by its training dataset and may not generalize well for all use cases.
58
 
59
- ## How to Use
60
 
61
  Here is how to use this model:
62
 
@@ -70,17 +78,20 @@ qa_results = nlp(text, context)
70
  print(qa_results)
71
  ```
72
 
 
 
 
73
  ## Training
74
 
75
  ### Training data
76
  We used the QA dataset in Catalan called [CatalanQA](https://huggingface.co/datasets/projecte-aina/catalanqa) for training and evaluation, and the [XQuAD-ca](https://huggingface.co/datasets/projecte-aina/xquad-ca) test set for evaluation.
77
 
78
- ### Training Procedure
79
  The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set.
80
 
81
  ## Evaluation
82
 
83
- ### Variable and Metrics
84
 
85
  This model was finetuned maximizing F1 score.
86
 
@@ -97,11 +108,24 @@ We evaluated the _roberta-base-ca-cased-qa_ on the CatalanQA and XQuAD-ca test s
97
 
98
  For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club).
99
 
100
- ## Licensing Information
101
 
 
 
 
 
 
 
 
 
 
 
102
  [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
103
 
104
- ## Citation Information
 
 
 
105
  If you use any of these resources (datasets or models) in your work, please cite our latest paper:
106
  ```bibtex
107
  @inproceedings{armengol-estape-etal-2021-multilingual,
@@ -125,15 +149,7 @@ If you use any of these resources (datasets or models) in your work, please cite
125
  }
126
  ```
127
 
128
- ### Funding
129
- This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
130
-
131
-
132
- ## Contributions
133
-
134
- [N/A]
135
-
136
- ## Disclaimer
137
 
138
  <details>
139
  <summary>Click to expand</summary>
 
33
  # Catalan BERTa (roberta-base-ca) finetuned for Question Answering.
34
 
35
  ## Table of Contents
36
+ <details>
37
+ <summary>Click to expand</summary>
38
+
39
+ - [Model description](#model-description)
40
+ - [Intended uses and limitations](#intended-use)
41
+ - [How to use](#how-to-use)
42
+ - [Limitations and bias](#limitations-and-bias)
43
  - [Training](#training)
44
+ - [Training data](#training-data)
45
+ - [Training procedure](#training-procedure)
46
  - [Evaluation](#evaluation)
47
+ - [Variable and metrics](#variable-and-metrics)
48
+ - [Evaluation results](#evaluation-results)
49
+ - [Additional information](#additional-information)
50
+ - [Author](#author)
51
+ - [Contact information](#contact-information)
52
+ - [Copyright](#copyright)
53
+ - [Licensing information](#licensing-information)
54
+ - [Funding](#funding)
55
+ - [Citing information](#citing-information)
56
+ - [Disclaimer](#disclaimer)
57
+ </details>
58
 
59
  ## Model description
60
 
61
  The **roberta-base-ca-cased-qa** is a Question Answering (QA) model for the Catalan language fine-tuned from the roberta-base-ca model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers.
62
 
63
+ ## Intended uses and limitations
64
 
65
  **roberta-base-ca-cased-qa** model can be used for extractive question answering. The model is limited by its training dataset and may not generalize well for all use cases.
66
 
67
+ ## How to use
68
 
69
  Here is how to use this model:
70
 
 
78
  print(qa_results)
79
  ```
80
 
81
+ ## Limitations and bias
82
+ At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated.
83
+
84
  ## Training
85
 
86
  ### Training data
87
  We used the QA dataset in Catalan called [CatalanQA](https://huggingface.co/datasets/projecte-aina/catalanqa) for training and evaluation, and the [XQuAD-ca](https://huggingface.co/datasets/projecte-aina/xquad-ca) test set for evaluation.
88
 
89
+ ### Training procedure
90
  The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set.
91
 
92
  ## Evaluation
93
 
94
+ ### Variable and metrics
95
 
96
  This model was finetuned maximizing F1 score.
97
 
 
108
 
109
  For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club).
110
 
111
+ ## Additional information
112
 
113
+ ### Author
114
+ Text Mining Unit (TeMU) at the Barcelona Supercomputing Center (bsc-temu@bsc.es)
115
+
116
+ ### Contact information
117
+ For further information, send an email to aina@bsc.es
118
+
119
+ ### Copyright
120
+ Copyright (c) 2022 Text Mining Unit at Barcelona Supercomputing Center
121
+
122
+ ### Licensing information
123
  [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
124
 
125
+ ### Funding
126
+ This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
127
+
128
+ ### Citation Information
129
  If you use any of these resources (datasets or models) in your work, please cite our latest paper:
130
  ```bibtex
131
  @inproceedings{armengol-estape-etal-2021-multilingual,
 
149
  }
150
  ```
151
 
152
+ ### Disclaimer
 
 
 
 
 
 
 
 
153
 
154
  <details>
155
  <summary>Click to expand</summary>