Fairseq
Catalan
English
fdelucaf commited on
Commit
a587adb
1 Parent(s): 6747420

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +39 -42
README.md CHANGED
@@ -2,31 +2,12 @@
2
  license: apache-2.0
3
  ---
4
  ## Aina Project's Catalan-English machine translation model
5
-
6
- ## Table of Contents
7
- - [Model Description](#model-description)
8
- - [Intended Uses and Limitations](#intended-use)
9
- - [How to Use](#how-to-use)
10
- - [Training](#training)
11
- - [Training data](#training-data)
12
- - [Training procedure](#training-procedure)
13
- - [Data Preparation](#data-preparation)
14
- - [Tokenization](#tokenization)
15
- - [Hyperparameters](#hyperparameters)
16
- - [Evaluation](#evaluation)
17
- - [Variable and Metrics](#variable-and-metrics)
18
- - [Evaluation Results](#evaluation-results)
19
- - [Additional Information](#additional-information)
20
- - [Author](#author)
21
- - [Contact Information](#contact-information)
22
- - [Copyright](#copyright)
23
- - [Licensing Information](#licensing-information)
24
- - [Funding](#funding)
25
- - [Disclaimer](#disclaimer)
26
 
27
  ## Model description
28
 
29
- This model was trained from scratch using the [Fairseq toolkit](https://fairseq.readthedocs.io/en/latest/) on a combination of Catalan-English datasets, up to 11 million sentences. Additionally, the model is evaluated on several public datasecomprising 5 different domains (general, adminstrative, technology, biomedical, and news).
 
 
30
 
31
  ## Intended uses and limitations
32
 
@@ -46,7 +27,7 @@ Translate a sentence using python
46
  import ctranslate2
47
  import pyonmttok
48
  from huggingface_hub import snapshot_download
49
- model_dir = snapshot_download(repo_id="projecte-aina/mt-aina-ca-en", revision="main")
50
 
51
  tokenizer=pyonmttok.Tokenizer(mode="none", sp_model_path = model_dir + "/spm.model")
52
  tokenized=tokenizer.tokenize("Benvingut al projecte Aina!")
@@ -56,6 +37,10 @@ translated = translator.translate_batch([tokenized[0]])
56
  print(tokenizer.detokenize(translated[0][0]['tokens']))
57
  ```
58
 
 
 
 
 
59
  ## Training
60
 
61
  ### Training data
@@ -91,12 +76,15 @@ The model was trained on a combination of the following datasets:
91
 
92
  ### Data preparation
93
 
94
- All datasets are concatenated and filtered using the [mBERT Gencata parallel filter](https://huggingface.co/projecte-aina/mbert-base-gencata). Before training, the punctuation is normalized using a modified version of the join-single-file.py script from [SoftCatalà](https://github.com/Softcatala/nmt-models/blob/master/data-processing-tools/join-single-file.py)
 
 
95
 
96
 
97
  #### Tokenization
98
 
99
- All data is tokenized using sentencepiece, using 50 thousand token sentencepiece model learned from the combination of all filtered training data. This model is included.
 
100
 
101
  #### Hyperparameters
102
 
@@ -130,14 +118,20 @@ The model was trained for a total of 35.000 updates. Weights were saved every 10
130
 
131
  ### Variable and metrics
132
 
133
- We use the BLEU score for evaluation on test sets: [Flores-101](https://github.com/facebookresearch/flores), [TaCon](https://elrc-share.eu/repository/browse/tacon-spanish-constitution-mt-test-set/84a96138b98611ec9c1a00155d02670628f3e6857b0f422abd82abc3795ec8c2/), [United Nations](https://zenodo.org/record/3888414#.Y33-_tLMIW0), [Cybersecurity](https://elrc-share.eu/repository/browse/cyber-mt-test-set/2bd93faab98c11ec9c1a00155d026706b96a490ed3e140f0a29a80a08c46e91e/), [wmt19 biomedical test set](), [wmt13 news test set](https://elrc-share.eu/repository/browse/catalan-wmt2013-machine-translation-shared-task-test-set/84a96139b98611ec9c1a00155d0267061a0aa1b62e2248e89aab4952f3c230fc/), [aina aapp]()
 
 
 
 
 
134
 
135
  ### Evaluation results
136
 
137
- Below are the evaluation results on the machine translation from Catalan to English compared to [Softcatalà](https://www.softcatala.org/) and [Google Translate](https://translate.google.es/?hl=es):
 
138
 
139
 
140
- | Test set | SoftCatalà | Google Translate | mt-aina-ca-en |
141
  |----------------------|------------|------------------|---------------|
142
  | Spanish Constitution | 35,8 | **43,2** | 40,3 |
143
  | United Nations | 44,4 | **47,4** | 44,8 |
@@ -150,34 +144,37 @@ Below are the evaluation results on the machine translation from Catalan to Engl
150
  | wmt 13 news | 37,8 | **39,8** | 39,3 |
151
  | Average | 39,2 | **45,0** | 41,6 |
152
 
153
-
154
  ## Additional information
155
 
156
  ### Author
157
- Text Mining Unit (TeMU) at the Barcelona Supercomputing Center (bsc-temu@bsc.es)
158
 
159
- ### Contact information
160
- For further information, send an email to aina@bsc.es
161
 
162
  ### Copyright
163
- Copyright (c) 2022 Text Mining Unit at Barcelona Supercomputing Center
164
 
165
-
166
- ### Licensing Information
167
  [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
168
 
169
  ### Funding
170
- This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
171
 
172
- ## Limitations and Bias
173
- At the time of submission, no measures have been taken to estimate the bias and toxicity embedded in the model. However, we are aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated.
174
 
175
- ## Disclaimer
176
  <details>
177
  <summary>Click to expand</summary>
178
 
179
- The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions.
 
 
 
 
 
 
180
 
181
- When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence.
 
182
 
183
- In no event shall the owner and creator of the models (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models.
 
2
  license: apache-2.0
3
  ---
4
  ## Aina Project's Catalan-English machine translation model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
  ## Model description
7
 
8
+ This model was trained from scratch using the [Fairseq toolkit](https://fairseq.readthedocs.io/en/latest/) on a combination of Catalan-English datasets,
9
+ up to 11 million sentences. Additionally, the model is evaluated on several public datasecomprising 5 different domains (general, adminstrative, technology,
10
+ biomedical, and news).
11
 
12
  ## Intended uses and limitations
13
 
 
27
  import ctranslate2
28
  import pyonmttok
29
  from huggingface_hub import snapshot_download
30
+ model_dir = snapshot_download(repo_id="projecte-aina/aina-translator-ca-en", revision="main")
31
 
32
  tokenizer=pyonmttok.Tokenizer(mode="none", sp_model_path = model_dir + "/spm.model")
33
  tokenized=tokenizer.tokenize("Benvingut al projecte Aina!")
 
37
  print(tokenizer.detokenize(translated[0][0]['tokens']))
38
  ```
39
 
40
+ ## Limitations and bias
41
+ At the time of submission, no measures have been taken to estimate the bias and toxicity embedded in the model.
42
+ However, we are well aware that our models may be biased. We intend to conduct research in these areas in the future, and if completed, this model card will be updated.
43
+
44
  ## Training
45
 
46
  ### Training data
 
76
 
77
  ### Data preparation
78
 
79
+ All datasets are concatenated and filtered using the [mBERT Gencata parallel filter](https://huggingface.co/projecte-aina/mbert-base-gencata).
80
+ Before training, the punctuation is normalized using a modified version of the join-single-file.py script from
81
+ [SoftCatalà](https://github.com/Softcatala/nmt-models/blob/master/data-processing-tools/join-single-file.py)
82
 
83
 
84
  #### Tokenization
85
 
86
+ All data is tokenized using sentencepiece, using 50 thousand token sentencepiece model learned from the combination of all filtered training data.
87
+ This model is included.
88
 
89
  #### Hyperparameters
90
 
 
118
 
119
  ### Variable and metrics
120
 
121
+ We use the BLEU score for evaluation on test sets: [Flores-101](https://github.com/facebookresearch/flores),
122
+ [TaCon](https://elrc-share.eu/repository/browse/tacon-spanish-constitution-mt-test-set/84a96138b98611ec9c1a00155d02670628f3e6857b0f422abd82abc3795ec8c2/),
123
+ [United Nations](https://zenodo.org/record/3888414#.Y33-_tLMIW0),
124
+ [Cybersecurity](https://elrc-share.eu/repository/browse/cyber-mt-test-set/2bd93faab98c11ec9c1a00155d026706b96a490ed3e140f0a29a80a08c46e91e/),
125
+ [wmt19 biomedical test set](http://www.statmt.org/wmt19/biomedical-translation-task.html),
126
+ [wmt13 news test set](https://elrc-share.eu/repository/browse/catalan-wmt2013-machine-translation-shared-task-test-set/84a96139b98611ec9c1a00155d0267061a0aa1b62e2248e89aab4952f3c230fc/), [aina aapp]()
127
 
128
  ### Evaluation results
129
 
130
+ Below are the evaluation results on the machine translation from Catalan to English compared to [Softcatalà](https://www.softcatala.org/) and
131
+ [Google Translate](https://translate.google.es/?hl=es):
132
 
133
 
134
+ | Test set | SoftCatalà | Google Translate | aina-translator-ca-en |
135
  |----------------------|------------|------------------|---------------|
136
  | Spanish Constitution | 35,8 | **43,2** | 40,3 |
137
  | United Nations | 44,4 | **47,4** | 44,8 |
 
144
  | wmt 13 news | 37,8 | **39,8** | 39,3 |
145
  | Average | 39,2 | **45,0** | 41,6 |
146
 
 
147
  ## Additional information
148
 
149
  ### Author
150
+ The Language Technologies Unit from Barcelona Supercomputing Center.
151
 
152
+ ### Contact
153
+ For further information, please send an email to <langtech@bsc.es>.
154
 
155
  ### Copyright
156
+ Copyright(c) 2023 by Language Technologies Unit, Barcelona Supercomputing Center.
157
 
158
+ ### License
 
159
  [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
160
 
161
  ### Funding
162
+ This work has been promoted and financed by the Generalitat de Catalunya through the [Aina project](https://projecteaina.cat/).
163
 
164
+ ### Disclaimer
 
165
 
 
166
  <details>
167
  <summary>Click to expand</summary>
168
 
169
+ The model published in this repository is intended for a generalist purpose and is available to third parties under a permissive Apache License, Version 2.0.
170
+
171
+ Be aware that the model may have biases and/or any other undesirable distortions.
172
+
173
+ When third parties deploy or provide systems and/or services to other parties using this model (or any system based on it)
174
+ or become users of the model, they should note that it is their responsibility to mitigate the risks arising from its use and,
175
+ in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence.
176
 
177
+ In no event shall the owner and creator of the model (Barcelona Supercomputing Center)
178
+ be liable for any results arising from the use made by third parties.
179
 
180
+ </details>