Pclanglais commited on
Commit
4b866bc
1 Parent(s): 5fbe74c

Upload finetune_scikitllm.py

Browse files
Files changed (1) hide show
  1. finetune_scikitllm.py +236 -0
finetune_scikitllm.py ADDED
@@ -0,0 +1,236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+
4
+ #This is the script used to finetune the scikit-llm model.
5
+ #It also contains all the hyperparameters used for training and should be fully reproducible.
6
+
7
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
8
+
9
+ print(device)
10
+
11
+
12
+ from datasets import load_dataset
13
+ from transformers import (
14
+ AutoModelForCausalLM,
15
+ AutoTokenizer,
16
+ BitsAndBytesConfig,
17
+ HfArgumentParser,
18
+ TrainingArguments,
19
+ pipeline,
20
+ logging,
21
+ LlamaTokenizerFast
22
+ )
23
+ from peft import LoraConfig, PeftModel, get_peft_model
24
+ from trl import SFTTrainer
25
+
26
+ # We use a previously finetuned model of Mistral, Mistral-Hermes.
27
+ #It already includes many instruction-based features (including the chatml syntax) that makes it easier to finetune.
28
+ model_name = "mistral-hermes-2.5"
29
+
30
+ torch.cuda.empty_cache()
31
+
32
+ # The name of the model.
33
+ new_model_name = "mistral-skikit-reference"
34
+
35
+ # The output directory where the model predictions and checkpoints will be written
36
+ output_dir = "./mistral-skikit-reference"
37
+
38
+ # Tensorboard logs
39
+ tb_log_dir = "./mistral-skikit-reference/logs"
40
+
41
+ # The number of steps. Since we chose a lower learning rate, we took on a long training (8 epochs). Could be lower.
42
+ max_steps = 1200
43
+
44
+ # Les paramètres importants !!
45
+ per_device_train_batch_size = 4 #Number of batches to send per step. Optimal given our GPU vram.
46
+ learning_rate = 2e-5 #The most important hyperparmater. We take a lower value as mistral-hermes is already finetuned and we want to keep the capacities.
47
+ max_seq_length = 4096 #Context window length. Here we are constrained by Hermes, but Mistral is up to 8128 (32k in the new version)
48
+ save_steps = 1000 # Automated saving of the steps.
49
+ lr_scheduler_type = "linear" #Learning rate scheduler. Better to decrease the learning rate for long training. I prefer linear over to cosine as it is more predictable: easier to restart training if needed.
50
+
51
+
52
+ #Other parameters. I don't usually tweak thoses.
53
+ local_rank = -1
54
+ per_device_eval_batch_size = 1
55
+ gradient_accumulation_steps = 4
56
+ max_grad_norm = 0.3
57
+ weight_decay = 0.001
58
+ lora_alpha = 16
59
+ lora_dropout = 0.1
60
+ lora_r = 64
61
+
62
+ # Group sequences into batches with same length (saves memory and speeds up training considerably)
63
+ group_by_length = True
64
+
65
+ # Activate 4-bit precision base model loading
66
+ #We go back to 16-bit for inference.
67
+ #Currently this speeds up training significantly we nearly no quality impact.
68
+ use_4bit = True
69
+
70
+ # Activate nested quantization for 4-bit base models
71
+ use_nested_quant = False
72
+
73
+ # Compute dtype for 4-bit base models
74
+ bnb_4bit_compute_dtype = "float16"
75
+
76
+ # Quantization type (fp4 or nf4=
77
+ bnb_4bit_quant_type = "nf4"
78
+
79
+ # Number of training epochs
80
+ #(not used in practice)
81
+ num_train_epochs = 1
82
+
83
+ # Enable fp16 training
84
+ fp16 = True
85
+
86
+ # Enable bf16 training
87
+ bf16 = False
88
+
89
+ # Use packing dataset creating
90
+ packing = False
91
+
92
+ # Enable gradient checkpointing
93
+ gradient_checkpointing = True
94
+
95
+ # Optimizer to use, original is paged_adamw_32bit
96
+ optim = "paged_adamw_32bit"
97
+
98
+ # Fraction of steps to do a warmup for
99
+ warmup_ratio = 0.03
100
+
101
+ # Log every X updates steps
102
+ logging_steps = 1
103
+
104
+ # Load the entire model on the GPU 0
105
+ device_map = {"": 0}
106
+
107
+ # Visualize training
108
+ report_to = "tensorboard"
109
+
110
+
111
+ #2. Loading the tokenizer
112
+ peft_config = LoraConfig(
113
+ lora_alpha=lora_alpha,
114
+ lora_dropout=lora_dropout,
115
+ r=lora_r,
116
+ inference_mode=False,
117
+ task_type="CAUSAL_LM",
118
+ target_modules = ["q_proj", "v_proj"]
119
+ )
120
+
121
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
122
+
123
+ # This is the fix for fp16 training
124
+ tokenizer.pad_token = tokenizer.eos_token
125
+
126
+ #3. Preparing the dataset.
127
+ #This is the part most specific to the scikit model.
128
+ #We take an entire conversation, as both the input and the output are part of the same string of texts.
129
+ from datasets import load_dataset
130
+
131
+ def format_alpaca(sample):
132
+ prompt = f"{sample['conversation']}"
133
+ return prompt
134
+
135
+ # template dataset to add prompt to each sample
136
+ def template_dataset(sample):
137
+ sample["text"] = f"{format_alpaca(sample)}{tokenizer.eos_token}"
138
+ return sample
139
+
140
+ # Loading the data du dataset.
141
+ data_files = {"train": "skikit_administration.json"}
142
+ dataset = load_dataset("json", data_files=data_files, split="train")
143
+
144
+ # Shuffle the dataset
145
+ dataset_shuffled = dataset.shuffle(seed=42)
146
+
147
+ #Dataset parsing.
148
+ dataset = dataset.map(template_dataset, remove_columns=list(dataset.features))
149
+
150
+ print(dataset[40])
151
+
152
+ #4. Model import
153
+
154
+ # Load tokenizer and model with QLoRA configuration
155
+ compute_dtype = getattr(torch, bnb_4bit_compute_dtype)
156
+
157
+ bnb_config = BitsAndBytesConfig(
158
+ load_in_4bit=use_4bit,
159
+ bnb_4bit_quant_type=bnb_4bit_quant_type,
160
+ bnb_4bit_compute_dtype=compute_dtype,
161
+ bnb_4bit_use_double_quant=use_nested_quant,
162
+ )
163
+
164
+ if compute_dtype == torch.float16 and use_4bit:
165
+ major, _ = torch.cuda.get_device_capability()
166
+ if major >= 8:
167
+ print("=" * 80)
168
+ print("Your GPU supports bfloat16, you can accelerate training with the argument --bf16")
169
+ print("=" * 80)
170
+
171
+ model = AutoModelForCausalLM.from_pretrained(
172
+ model_name,
173
+ device_map=device_map,
174
+ quantization_config=bnb_config
175
+ )
176
+
177
+ model.config.use_cache = False
178
+ model.config.pretraining_tp = 1
179
+
180
+ #5. Fine-tuning (actually)
181
+ #We pass all the hyperparmeters, and are ready to go.
182
+
183
+ torch.cuda.empty_cache()
184
+
185
+ training_arguments = TrainingArguments(
186
+ output_dir=output_dir,
187
+ per_device_train_batch_size=per_device_train_batch_size,
188
+ gradient_accumulation_steps=gradient_accumulation_steps,
189
+ gradient_checkpointing=True,
190
+ optim=optim,
191
+ save_steps=save_steps,
192
+ logging_steps=logging_steps,
193
+ learning_rate=learning_rate,
194
+ fp16=fp16,
195
+ bf16=bf16,
196
+ max_grad_norm=max_grad_norm,
197
+ max_steps=max_steps,
198
+ warmup_ratio=warmup_ratio,
199
+ group_by_length=group_by_length,
200
+ lr_scheduler_type=lr_scheduler_type,
201
+ report_to="tensorboard"
202
+ )
203
+
204
+ trainer = SFTTrainer(
205
+ model=model,
206
+ train_dataset=dataset,
207
+ peft_config=peft_config,
208
+ dataset_text_field="text",
209
+ max_seq_length=max_seq_length,
210
+ tokenizer=tokenizer,
211
+ args=training_arguments,
212
+ packing=packing
213
+ )
214
+
215
+ #Training:
216
+ trainer.train()
217
+
218
+ #Optionally, if we want to continue training (for instance if there was an issue):
219
+ #trainer.train(resume_from_checkpoint=True)
220
+
221
+ #6. Export the weights
222
+ model_to_save = trainer.model.module if hasattr(trainer.model, 'module') else trainer.model # Take care of distributed/parallel training
223
+ model_to_save.save_pretrained(new_model_name)
224
+
225
+ torch.cuda.empty_cache()
226
+
227
+ from peft import AutoPeftModelForCausalLM
228
+
229
+ model = AutoPeftModelForCausalLM.from_pretrained(new_model_name, device_map="auto", torch_dtype=torch.bfloat16)
230
+ model = model.merge_and_unload()
231
+
232
+ output_merged_dir = os.path.join(new_model_name, new_model_name)
233
+ model.save_pretrained(output_merged_dir, safe_serialization=True)
234
+
235
+ #We also save the tokenizer
236
+ tokenizer.save_pretrained(output_merged_dir)