prithivMLmods commited on
Commit
f94be08
·
verified ·
1 Parent(s): 1d0d10e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +103 -3
README.md CHANGED
@@ -1,3 +1,103 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ base_model:
6
+ - Qwen/QwQ-32B
7
+ pipeline_tag: text-generation
8
+ library_name: transformers
9
+ tags:
10
+ - StreamlinedMemory
11
+ - text-generation-inference
12
+ - coding
13
+ - Qwen
14
+ ---
15
+ ![4.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/YuiCLMX-GldYAxX0NFvAi.png)
16
+
17
+ # **Sombrero-QwQ-32B-Elite11**
18
+
19
+ > Sombrero-QwQ-32B-Elite11 is based on the QwQ 32B architecture by Qwen, optimized for **Streamlined Memory Optimization** and enhanced **explanatory, mathematical problem-solving, and reasoning capabilities**. This model is particularly effective for **coding purposes**, avoiding unwanted textual token generation and ensuring efficiency in structured programming outputs.
20
+
21
+ ## **Key Improvements**
22
+ 1. **Optimized Memory Utilization**: Designed to minimize computational overhead while maintaining high accuracy and response coherence.
23
+ 2. **Advanced Problem-Solving**: Excels in mathematical reasoning, step-by-step solutions, and logical deductions.
24
+ 3. **Superior Coding Capabilities**: Fine-tuned for various programming languages, assisting in debugging, generating code snippets, and optimizing algorithms.
25
+ 4. **Enhanced Explanatory Depth**: Provides structured, well-organized explanations for complex queries across different domains.
26
+ 5. **Long-Context Processing**: Supports up to **256K tokens** for input and can generate up to **12K tokens** in a single output, making it ideal for extensive documentation and detailed responses.
27
+ 6. **Multilingual Proficiency**: Supports over **35 languages**, including English, Chinese, French, Spanish, German, Russian, Japanese, Arabic, and more.
28
+
29
+ ## **Quickstart with Transformers**
30
+
31
+ Here is a code snippet demonstrating how to load the tokenizer and model for streamlined memory-efficient inference:
32
+
33
+ ```python
34
+ from transformers import AutoModelForCausalLM, AutoTokenizer
35
+
36
+ model_name = "prithivMLmods/Sombrero-QwQ-32B-Elite11"
37
+
38
+ model = AutoModelForCausalLM.from_pretrained(
39
+ model_name,
40
+ torch_dtype="auto",
41
+ device_map="auto"
42
+ )
43
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
44
+
45
+ prompt = "Write an optimized Python function for matrix multiplication."
46
+ messages = [
47
+ {"role": "system", "content": "You are an AI assistant specializing in coding and problem-solving."},
48
+ {"role": "user", "content": prompt}
49
+ ]
50
+ text = tokenizer.apply_chat_template(
51
+ messages,
52
+ tokenize=False,
53
+ add_generation_prompt=True
54
+ )
55
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
56
+
57
+ generated_ids = model.generate(
58
+ **model_inputs,
59
+ max_new_tokens=512
60
+ )
61
+ generated_ids = [
62
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
63
+ ]
64
+
65
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
66
+ ```
67
+
68
+ ## **Intended Use**
69
+ 1. **Coding and Development Assistance**:
70
+ - Generates optimized code snippets for multiple programming languages.
71
+ - Assists with debugging, refactoring, and explaining algorithms.
72
+ - Converts pseudocode to functional implementations efficiently.
73
+
74
+ 2. **Mathematical and Logical Problem-Solving**:
75
+ - Excels in step-by-step explanations for complex mathematical problems.
76
+ - Generates proofs, formulas, and structured reasoning for numerical analysis.
77
+
78
+ 3. **Explanatory and Technical Writing**:
79
+ - Ideal for generating technical documentation, research summaries, and structured reports.
80
+ - Provides detailed breakdowns of complex topics in an easy-to-understand manner.
81
+
82
+ 4. **AI-Powered Conversational Agents**:
83
+ - Enhances chatbot interactions with **accurate, structured, and contextually relevant** responses.
84
+ - Adapts to different conversational styles while maintaining coherence.
85
+
86
+ 5. **Multilingual Applications**:
87
+ - Supports multilingual responses for global usability.
88
+ - Capable of **programming language translations** and **text-to-code conversions**.
89
+
90
+ 6. **Long-Form Content Generation**:
91
+ - Capable of generating **extensive articles, research papers, and code documentation** without losing coherence.
92
+
93
+ ## **Limitations**
94
+ 1. **High Computational Requirements**:
95
+ - Requires high-memory **GPUs or TPUs** for optimal performance, especially with long-context processing.
96
+ 2. **Potential Bias in Outputs**:
97
+ - Although optimized for neutrality, responses may reflect biases present in training data.
98
+ 3. **Sensitivity to Prompt Engineering**:
99
+ - The quality of the response depends on how well the input query is structured.
100
+ 4. **Error Accumulation in Large Outputs**:
101
+ - Minor inconsistencies in early responses can propagate through long-form content.
102
+ 5. **Limited Awareness of Real-Time Data**:
103
+ - Lacks direct access to **real-time updates, news, or dynamic internet data** beyond its training cutoff.