prithivMLmods commited on
Commit
b346525
·
verified ·
1 Parent(s): 519fcc6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -1
README.md CHANGED
@@ -6,4 +6,68 @@ base_model:
6
  - google/siglip2-base-patch16-224
7
  pipeline_tag: image-classification
8
  library_name: transformers
9
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  - google/siglip2-base-patch16-224
7
  pipeline_tag: image-classification
8
  library_name: transformers
9
+ ---
10
+ # **Guard-Against-Unsafe-Content-Siglip2**
11
+ **Guard-Against-Unsafe-Content-Siglip2** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to detect **NSFW content**, including **vulgarity and nudity**, using the **SiglipForImageClassification** architecture.
12
+
13
+ The model categorizes images into two classes:
14
+ - **Class 0:** "Unsafe Content" – indicating that the image contains vulgarity, nudity, or explicit content.
15
+ - **Class 1:** "Safe Content" – indicating that the image is appropriate and does not contain any unsafe elements.
16
+
17
+ ```python
18
+ !pip install -q transformers torch pillow gradio
19
+ ```
20
+
21
+ ```python
22
+ import gradio as gr
23
+ from transformers import AutoImageProcessor
24
+ from transformers import SiglipForImageClassification
25
+ from transformers.image_utils import load_image
26
+ from PIL import Image
27
+ import torch
28
+
29
+ # Load model and processor
30
+ model_name = "prithivMLmods/Guard-Against-Unsafe-Content-Siglip2"
31
+ model = SiglipForImageClassification.from_pretrained(model_name)
32
+ processor = AutoImageProcessor.from_pretrained(model_name)
33
+
34
+ def nsfw_detection(image):
35
+ """Predicts NSFW probability scores for an image."""
36
+ image = Image.fromarray(image).convert("RGB")
37
+ inputs = processor(images=image, return_tensors="pt")
38
+
39
+ with torch.no_grad():
40
+ outputs = model(**inputs)
41
+ logits = outputs.logits
42
+ probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
43
+
44
+ labels = model.config.id2label
45
+ predictions = {labels[i]: round(probs[i], 3) for i in range(len(probs))}
46
+
47
+ return predictions
48
+
49
+ # Create Gradio interface
50
+ iface = gr.Interface(
51
+ fn=nsfw_detection,
52
+ inputs=gr.Image(type="numpy"),
53
+ outputs=gr.Label(label="NSFW Content Detection"),
54
+ title="NSFW Image Detection",
55
+ description="Upload an image to check if it contains unsafe content such as vulgarity or nudity."
56
+ )
57
+
58
+ # Launch the app
59
+ if __name__ == "__main__":
60
+ iface.launch()
61
+ ```
62
+
63
+ # **Intended Use:**
64
+
65
+ The **Guard-Against-Unsafe-Content-Siglip2** model is designed to detect **inappropriate and explicit content** in images. It helps distinguish between **safe** and **unsafe** images based on the presence of **vulgarity, nudity, or other NSFW elements**.
66
+
67
+ ### Potential Use Cases:
68
+ - **NSFW Content Detection:** Identifying images containing explicit content to help filter inappropriate material.
69
+ - **Content Moderation:** Assisting platforms in filtering out unsafe images before they are shared publicly.
70
+ - **Parental Controls:** Enabling automated filtering of explicit images in child-friendly environments.
71
+ - **Safe Image Classification:** Helping AI-powered applications distinguish between safe and unsafe content for appropriate usage.
72
+
73
+ This model is intended for **research, content moderation, and automated safety applications**, rather than **real-time detection** of explicit content.