pritamdeka's picture
Update README.md
44683bb
|
raw
history blame
2.32 kB
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: pritamdeka/PubMedBERT-MNLI-MEDNLI
    results: []

pritamdeka/PubMedBERT-MNLI-MEDNLI

This model is a fine-tuned version of PubMedBERT on the MNLI dataset first and then on the MedNLI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9501
  • Accuracy: 0.8667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5673 1.42 500 0.4358 0.8437
0.2898 2.85 1000 0.4845 0.8523
0.1669 4.27 1500 0.6233 0.8573
0.1087 5.7 2000 0.7263 0.8573
0.0728 7.12 2500 0.8841 0.8638
0.0512 8.55 3000 0.9501 0.8667
0.0372 9.97 3500 1.0440 0.8566
0.0262 11.4 4000 1.0770 0.8609
0.0243 12.82 4500 1.0931 0.8616
0.023 14.25 5000 1.1088 0.8631
0.0163 15.67 5500 1.1264 0.8581
0.0111 17.09 6000 1.1541 0.8616
0.0098 18.52 6500 1.1542 0.8631
0.0074 19.94 7000 1.1653 0.8638

Framework versions

  • Transformers 4.22.0.dev0
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1