Safetensors
llama
princeton-nlp commited on
Commit
e86daa5
1 Parent(s): f60ba3a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -3
README.md CHANGED
@@ -1,3 +1,64 @@
1
- ---
2
- license: llama3
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama3
3
+ datasets:
4
+ - princeton-nlp/prolong-data-64K
5
+ - princeton-nlp/prolong-data-512K
6
+ base_model:
7
+ - princeton-nlp/Llama-3-8B-ProLong-64k-Base
8
+ ---
9
+
10
+ # princeton_nlp/Llama-3-8B-ProLong-512k-Base
11
+
12
+ [[Paper](https://arxiv.org/pdf/2410.02660)] [[HF Collection](https://huggingface.co/collections/princeton-nlp/prolong-66c72d55d2051a86ac7bd7e4)] [[Code](https://github.com/princeton-nlp/ProLong)]
13
+
14
+
15
+ **ProLong** (<u>Pr</u>incet<u>o</u>n <u>long</u>-context language models) is a family of long-context models that are continued trained and supervised fine-tuned from Llama-3-8B, with a maximum context window of 512K tokens. Our [main ProLong model](https://huggingface.co/princeton-nlp/Llama-3-8B-ProLong-512k-Instruct) is one of the best-performing long-context models at the 10B scale (evaluated by [HELMET](https://github.com/princeton-nlp/helmet)).
16
+
17
+ To train this strong long-context model, we conduct thorough ablations on the long-context pre-training data, SFT data, and numerous other design choices. We demonstrate our findings in our paper, [How to Train Long-Context Language Models (Effectively)](https://arxiv.org/pdf/2410.02660).
18
+
19
+
20
+ Authors: [Tianyu Gao](https://gaotianyu.xyz/about)\*, [Alexander Wettig](https://www.cs.princeton.edu/~awettig/)\*, [Howard Yen](https://howard-yen.github.io/), [Danqi Chen](https://www.cs.princeton.edu/~danqic/) (* equal contribution)
21
+
22
+ Contact: `{tianyug, awettig}@princeton.edu`
23
+
24
+ ## The ProLong Models
25
+
26
+ - [princeton_nlp/Llama-3-8B-ProLong-64k-Base](https://huggingface.co/princeton-nlp/Llama-3-8B-ProLong-64k-Base)
27
+ - [princeton_nlp/Llama-3-8B-ProLong-64k-Instruct](https://huggingface.co/princeton-nlp/Llama-3-8B-ProLong-64k-Instruct)
28
+ - [princeton_nlp/Llama-3-8B-ProLong-512k-Base](https://huggingface.co/princeton-nlp/Llama-3-8B-ProLong-512k-Base) ← you are here!
29
+ - ⭐ [princeton_nlp/Llama-3-8B-ProLong-512k-Instruct](https://huggingface.co/princeton-nlp/Llama-3-8B-ProLong-512k-Instruct)
30
+
31
+ ## Model card
32
+
33
+ Here are some quick facts about our main ProLong model: [princeton-nlp/Llama-3-8B-ProLong-512k-Instruct](https://huggingface.co/princeton-nlp/Llama-3-8B-ProLong-512k-Instruct).
34
+ * Base model: [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
35
+ * Long-context continued training: 20B tokens on 64K training data ([princeton-nlp/prolong-data-64K](https://huggingface.co/datasets/princeton-nlp/prolong-data-64K)), and 20B tokens on 512K training data ([princeton-nlp/prolong-data-512K](https://huggingface.co/datasets/princeton-nlp/prolong-data-512K))
36
+ * Supervised fine-tuning (SFT): [UltraChat](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k)
37
+ * Maximum context window: 512K tokens
38
+
39
+
40
+ <p align="center" style="margin-bottom: 0;">
41
+ <img width="80%" alt="image" src="https://github.com/user-attachments/assets/c31c9671-49fe-4776-91d2-de70ffd9f9a1">
42
+ </p>
43
+ <p align="center" style="margin-top: 0; padding-top: 0;">
44
+ <em>ProLong performance on <a href="https://github.com/princeton-nlp/helmet">HELMET</a> averaged over 32K, 64K, and 128K lengths. All models are instruct models.</em>
45
+ </p>
46
+
47
+
48
+ <p align="center">
49
+ <img width="80%" alt="image" src="https://github.com/user-attachments/assets/a36a7d0f-4480-4a29-80f3-208477707fb7">
50
+ </p>
51
+ <p align="center" style="margin-top: 0;">
52
+ <em>ProLong training recipe.</em>
53
+ </p>
54
+
55
+
56
+ ## Citation
57
+
58
+ ```bibtex
59
+ @article{gao2024prolong,
60
+ title={Enabling Large Language Models to Generate Text with Citations},
61
+ author={Gao, Tianyu and Wettig, Alexander and Yen, Howard and Chen, Danqi},
62
+ year={2024},
63
+ }
64
+ ```