minisss / README.md
potradovec's picture
End of training
f39f73e verified
metadata
license: mit
base_model: microsoft/MiniLM-L12-H384-uncased
tags:
  - generated_from_trainer
datasets:
  - emotion
metrics:
  - f1
model-index:
  - name: minisss
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: emotion
          type: emotion
          config: split
          split: validation
          args: split
        metrics:
          - name: F1
            type: f1
            value: 0.9361370380020481

minisss

This model is a fine-tuned version of microsoft/MiniLM-L12-H384-uncased on the emotion dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1791
  • F1: 0.9361

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1
1.1818 1.0 250 0.8298 0.5948
0.6392 2.0 500 0.3998 0.9005
0.3246 3.0 750 0.2472 0.9301
0.2151 4.0 1000 0.1937 0.9341
0.1707 5.0 1250 0.1791 0.9361

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2