metadata
base_model: sentence-transformers/all-MiniLM-L6-v2
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Enable audio recorder app
- text: Open video camera mode
- text: Show recent chats
- text: Switch to instant camera usage mode
- text: Could you switch to video camera mode?
inference: true
model-index:
- name: SetFit with sentence-transformers/all-MiniLM-L6-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 1
name: Accuracy
SetFit with sentence-transformers/all-MiniLM-L6-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-MiniLM-L6-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/all-MiniLM-L6-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 256 tokens
- Number of Classes: 3 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
microphone |
|
history |
|
camera |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 1.0 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("porxelek/word-classification")
# Run inference
preds = model("Show recent chats")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 2 | 4.1364 | 10 |
Label | Training Sample Count |
---|---|
camera | 250 |
history | 150 |
microphone | 150 |
Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0003 | 1 | 0.1209 | - |
0.0164 | 50 | 0.1449 | - |
0.0328 | 100 | 0.046 | - |
0.0492 | 150 | 0.0099 | - |
0.0656 | 200 | 0.0049 | - |
0.0820 | 250 | 0.0036 | - |
0.0985 | 300 | 0.0022 | - |
0.1149 | 350 | 0.0015 | - |
0.1313 | 400 | 0.0011 | - |
0.1477 | 450 | 0.001 | - |
0.1641 | 500 | 0.0009 | - |
0.1805 | 550 | 0.0009 | - |
0.1969 | 600 | 0.0009 | - |
0.2133 | 650 | 0.0008 | - |
0.2297 | 700 | 0.0007 | - |
0.2461 | 750 | 0.0006 | - |
0.2626 | 800 | 0.0006 | - |
0.2790 | 850 | 0.0006 | - |
0.2954 | 900 | 0.0006 | - |
0.3118 | 950 | 0.0005 | - |
0.3282 | 1000 | 0.0004 | - |
0.3446 | 1050 | 0.0005 | - |
0.3610 | 1100 | 0.0005 | - |
0.3774 | 1150 | 0.0004 | - |
0.3938 | 1200 | 0.0004 | - |
0.4102 | 1250 | 0.0004 | - |
0.4266 | 1300 | 0.0005 | - |
0.4431 | 1350 | 0.0004 | - |
0.4595 | 1400 | 0.0003 | - |
0.4759 | 1450 | 0.0003 | - |
0.4923 | 1500 | 0.0003 | - |
0.5087 | 1550 | 0.0003 | - |
0.5251 | 1600 | 0.0003 | - |
0.5415 | 1650 | 0.0003 | - |
0.5579 | 1700 | 0.0003 | - |
0.5743 | 1750 | 0.0003 | - |
0.5907 | 1800 | 0.0003 | - |
0.6072 | 1850 | 0.0002 | - |
0.6236 | 1900 | 0.0003 | - |
0.6400 | 1950 | 0.0002 | - |
0.6564 | 2000 | 0.0002 | - |
0.6728 | 2050 | 0.0002 | - |
0.6892 | 2100 | 0.0003 | - |
0.7056 | 2150 | 0.0002 | - |
0.7220 | 2200 | 0.0002 | - |
0.7384 | 2250 | 0.0002 | - |
0.7548 | 2300 | 0.0002 | - |
0.7713 | 2350 | 0.0002 | - |
0.7877 | 2400 | 0.0002 | - |
0.8041 | 2450 | 0.0002 | - |
0.8205 | 2500 | 0.0002 | - |
0.8369 | 2550 | 0.0002 | - |
0.8533 | 2600 | 0.0002 | - |
0.8697 | 2650 | 0.0002 | - |
0.8861 | 2700 | 0.0002 | - |
0.9025 | 2750 | 0.0002 | - |
0.9189 | 2800 | 0.0002 | - |
0.9353 | 2850 | 0.0002 | - |
0.9518 | 2900 | 0.0002 | - |
0.9682 | 2950 | 0.0002 | - |
0.9846 | 3000 | 0.0002 | - |
1.0 | 3047 | - | 0.0 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.39.0
- PyTorch: 2.3.1+cu121
- Datasets: 2.20.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}