layoutlm-funsd / README.md
pmorelr's picture
End of training
94da155
|
raw
history blame
9.25 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - funsd
model-index:
  - name: layoutlm-funsd
    results: []

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6650
  • Answer: {'precision': 0.7158712541620422, 'recall': 0.7972805933250927, 'f1': 0.7543859649122808, 'number': 809}
  • Header: {'precision': 0.2982456140350877, 'recall': 0.2857142857142857, 'f1': 0.2918454935622318, 'number': 119}
  • Question: {'precision': 0.7667238421955404, 'recall': 0.8394366197183099, 'f1': 0.8014343343792021, 'number': 1065}
  • Overall Precision: 0.7212
  • Overall Recall: 0.7893
  • Overall F1: 0.7537
  • Overall Accuracy: 0.8191

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.7902 1.0 10 1.6058 {'precision': 0.0174496644295302, 'recall': 0.016069221260815822, 'f1': 0.01673101673101673, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.24484848484848484, 'recall': 0.18967136150234742, 'f1': 0.21375661375661376, 'number': 1065} 0.1369 0.1079 0.1207 0.3425
1.4512 2.0 20 1.2477 {'precision': 0.22826086956521738, 'recall': 0.23362175525339926, 'f1': 0.23091020158827122, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.4611066559743384, 'recall': 0.539906103286385, 'f1': 0.49740484429065746, 'number': 1065} 0.3680 0.3833 0.3755 0.5802
1.0772 3.0 30 0.9579 {'precision': 0.47790055248618785, 'recall': 0.4276885043263288, 'f1': 0.45140247879973905, 'number': 809} {'precision': 0.05555555555555555, 'recall': 0.01680672268907563, 'f1': 0.025806451612903226, 'number': 119} {'precision': 0.6270125223613596, 'recall': 0.6582159624413145, 'f1': 0.6422354557947779, 'number': 1065} 0.5586 0.5263 0.5420 0.6919
0.8282 4.0 40 0.7735 {'precision': 0.6132368148914168, 'recall': 0.7330037082818294, 'f1': 0.6677927927927928, 'number': 809} {'precision': 0.17647058823529413, 'recall': 0.10084033613445378, 'f1': 0.1283422459893048, 'number': 119} {'precision': 0.6726649528706083, 'recall': 0.7370892018779343, 'f1': 0.703405017921147, 'number': 1065} 0.6312 0.6974 0.6627 0.7621
0.6763 5.0 50 0.7086 {'precision': 0.6333333333333333, 'recall': 0.7515451174289246, 'f1': 0.6873940079140758, 'number': 809} {'precision': 0.325, 'recall': 0.2184873949579832, 'f1': 0.26130653266331655, 'number': 119} {'precision': 0.6769731489015459, 'recall': 0.7812206572769953, 'f1': 0.7253705318221447, 'number': 1065} 0.6461 0.7356 0.6879 0.7869
0.5577 6.0 60 0.6736 {'precision': 0.6542155816435432, 'recall': 0.757725587144623, 'f1': 0.7021764032073311, 'number': 809} {'precision': 0.32926829268292684, 'recall': 0.226890756302521, 'f1': 0.26865671641791045, 'number': 119} {'precision': 0.6952822892498066, 'recall': 0.844131455399061, 'f1': 0.7625106022052586, 'number': 1065} 0.6657 0.7722 0.7150 0.7955
0.4901 7.0 70 0.6510 {'precision': 0.6706263498920086, 'recall': 0.7676143386897404, 'f1': 0.7158501440922191, 'number': 809} {'precision': 0.27927927927927926, 'recall': 0.2605042016806723, 'f1': 0.26956521739130435, 'number': 119} {'precision': 0.7412765957446809, 'recall': 0.8178403755868544, 'f1': 0.7776785714285714, 'number': 1065} 0.6885 0.7642 0.7244 0.7998
0.4474 8.0 80 0.6389 {'precision': 0.6828478964401294, 'recall': 0.7824474660074165, 'f1': 0.7292626728110598, 'number': 809} {'precision': 0.3137254901960784, 'recall': 0.2689075630252101, 'f1': 0.2895927601809955, 'number': 119} {'precision': 0.7523564695801199, 'recall': 0.8244131455399061, 'f1': 0.7867383512544801, 'number': 1065} 0.7026 0.7742 0.7367 0.8049
0.4055 9.0 90 0.6371 {'precision': 0.6855277475516867, 'recall': 0.7787391841779975, 'f1': 0.7291666666666666, 'number': 809} {'precision': 0.288135593220339, 'recall': 0.2857142857142857, 'f1': 0.2869198312236287, 'number': 119} {'precision': 0.7368852459016394, 'recall': 0.844131455399061, 'f1': 0.7868708971553611, 'number': 1065} 0.6925 0.7842 0.7355 0.8111
0.3597 10.0 100 0.6547 {'precision': 0.7027932960893855, 'recall': 0.7775030902348579, 'f1': 0.7382629107981221, 'number': 809} {'precision': 0.25925925925925924, 'recall': 0.29411764705882354, 'f1': 0.2755905511811024, 'number': 119} {'precision': 0.7463330457290768, 'recall': 0.812206572769953, 'f1': 0.7778776978417264, 'number': 1065} 0.6985 0.7672 0.7312 0.8070
0.3295 11.0 110 0.6618 {'precision': 0.709070796460177, 'recall': 0.792336217552534, 'f1': 0.7483946293053124, 'number': 809} {'precision': 0.3333333333333333, 'recall': 0.25210084033613445, 'f1': 0.28708133971291866, 'number': 119} {'precision': 0.7857142857142857, 'recall': 0.8366197183098592, 'f1': 0.8103683492496588, 'number': 1065} 0.7340 0.7837 0.7581 0.8106
0.3169 12.0 120 0.6639 {'precision': 0.7094972067039106, 'recall': 0.7849196538936959, 'f1': 0.7453051643192488, 'number': 809} {'precision': 0.3017241379310345, 'recall': 0.29411764705882354, 'f1': 0.29787234042553185, 'number': 119} {'precision': 0.7582417582417582, 'recall': 0.8422535211267606, 'f1': 0.7980427046263344, 'number': 1065} 0.7142 0.7863 0.7485 0.8152
0.2951 13.0 130 0.6653 {'precision': 0.7094972067039106, 'recall': 0.7849196538936959, 'f1': 0.7453051643192488, 'number': 809} {'precision': 0.3063063063063063, 'recall': 0.2857142857142857, 'f1': 0.2956521739130435, 'number': 119} {'precision': 0.7784588441330998, 'recall': 0.8347417840375587, 'f1': 0.805618486633439, 'number': 1065} 0.7253 0.7817 0.7525 0.8167
0.2872 14.0 140 0.6667 {'precision': 0.7116022099447514, 'recall': 0.796044499381953, 'f1': 0.751458576429405, 'number': 809} {'precision': 0.2982456140350877, 'recall': 0.2857142857142857, 'f1': 0.2918454935622318, 'number': 119} {'precision': 0.7737162750217581, 'recall': 0.8347417840375587, 'f1': 0.803071364046974, 'number': 1065} 0.7228 0.7863 0.7532 0.8179
0.2779 15.0 150 0.6650 {'precision': 0.7158712541620422, 'recall': 0.7972805933250927, 'f1': 0.7543859649122808, 'number': 809} {'precision': 0.2982456140350877, 'recall': 0.2857142857142857, 'f1': 0.2918454935622318, 'number': 119} {'precision': 0.7667238421955404, 'recall': 0.8394366197183099, 'f1': 0.8014343343792021, 'number': 1065} 0.7212 0.7893 0.7537 0.8191

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.12.1
  • Datasets 2.8.0
  • Tokenizers 0.13.2