RoSEtta-base-ja / README.md
yano0's picture
Add new SentenceTransformer model.
9221208 verified
|
raw
history blame
6.06 kB
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
base_model: yano0/my_rope_bert_v2
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget: []
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on yano0/my_rope_bert_v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: Unknown
type: unknown
metrics:
- type: pearson_cosine
value: 0.8363388345473755
name: Pearson Cosine
- type: spearman_cosine
value: 0.7829140815230603
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8169134821588451
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7806182228552376
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8176194153920942
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7812646926795144
name: Spearman Euclidean
- type: pearson_dot
value: 0.790584312051173
name: Pearson Dot
- type: spearman_dot
value: 0.7341313863604967
name: Spearman Dot
- type: pearson_max
value: 0.8363388345473755
name: Pearson Max
- type: spearman_max
value: 0.7829140815230603
name: Spearman Max
---
# SentenceTransformer based on yano0/my_rope_bert_v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [yano0/my_rope_bert_v2](https://huggingface.co/yano0/my_rope_bert_v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [yano0/my_rope_bert_v2](https://huggingface.co/yano0/my_rope_bert_v2) <!-- at revision a392086c08b3bf3a9b9030267a8965af0552d7fb -->
- **Maximum Sequence Length:** 1024 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: RetrievaBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("pkshatech/RoSEtta-base")
# Run inference
sentences = [
'The weather is lovely today.',
"It's so sunny outside!",
'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8363 |
| **spearman_cosine** | **0.7829** |
| pearson_manhattan | 0.8169 |
| spearman_manhattan | 0.7806 |
| pearson_euclidean | 0.8176 |
| spearman_euclidean | 0.7813 |
| pearson_dot | 0.7906 |
| spearman_dot | 0.7341 |
| pearson_max | 0.8363 |
| spearman_max | 0.7829 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Logs
| Epoch | Step | spearman_cosine |
|:-----:|:----:|:---------------:|
| 0 | 0 | 0.7829 |
### Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.0
- Transformers: 4.44.0
- PyTorch: 2.3.1+cu118
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1
## Citation
### BibTeX
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->