|
--- |
|
language: [] |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
base_model: yano0/my_rope_bert_v2 |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
widget: [] |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: SentenceTransformer based on yano0/my_rope_bert_v2 |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8363388345473755 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.7829140815230603 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8169134821588451 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.7806182228552376 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8176194153920942 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.7812646926795144 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.790584312051173 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7341313863604967 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8363388345473755 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.7829140815230603 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on yano0/my_rope_bert_v2 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [yano0/my_rope_bert_v2](https://huggingface.co/yano0/my_rope_bert_v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [yano0/my_rope_bert_v2](https://huggingface.co/yano0/my_rope_bert_v2) <!-- at revision a392086c08b3bf3a9b9030267a8965af0552d7fb --> |
|
- **Maximum Sequence Length:** 1024 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: RetrievaBertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("pkshatech/RoSEtta-base") |
|
# Run inference |
|
sentences = [ |
|
'The weather is lovely today.', |
|
"It's so sunny outside!", |
|
'He drove to the stadium.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
|
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8363 | |
|
| **spearman_cosine** | **0.7829** | |
|
| pearson_manhattan | 0.8169 | |
|
| spearman_manhattan | 0.7806 | |
|
| pearson_euclidean | 0.8176 | |
|
| spearman_euclidean | 0.7813 | |
|
| pearson_dot | 0.7906 | |
|
| spearman_dot | 0.7341 | |
|
| pearson_max | 0.8363 | |
|
| spearman_max | 0.7829 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Logs |
|
| Epoch | Step | spearman_cosine | |
|
|:-----:|:----:|:---------------:| |
|
| 0 | 0 | 0.7829 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.13 |
|
- Sentence Transformers: 3.0.0 |
|
- Transformers: 4.44.0 |
|
- PyTorch: 2.3.1+cu118 |
|
- Accelerate: 0.30.1 |
|
- Datasets: 2.19.2 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |