metadata
library_name: peft
license: llama3.2
base_model: meta-llama/Llama-3.2-1B
tags:
- generated_from_trainer
datasets:
- scitldr
model-index:
- name: Llama-3.2-1B-Summarization-LoRa
results: []
pipeline_tag: summarization
Llama-3.2-1B-Summarization-LoRa
This model is a fine-tuned version of meta-llama/Llama-3.2-1B on the scitldr dataset. It achieves the following results on the evaluation set:
- Loss: 2.5661
Model description
Fine-tuned (LoRa) Version of meta-llama/Llama-3.2-1B for Summarization of scientific documents
Intended uses & limitations
Summarization
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use paged_adamw_32bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 2
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.45 | 0.2008 | 200 | 2.5272 |
2.4331 | 0.4016 | 400 | 2.5327 |
2.4369 | 0.6024 | 600 | 2.5285 |
2.4315 | 0.8032 | 800 | 2.5238 |
2.4303 | 1.0040 | 1000 | 2.5181 |
2.1077 | 1.2048 | 1200 | 2.5525 |
2.0951 | 1.4056 | 1400 | 2.5611 |
2.0738 | 1.6064 | 1600 | 2.5591 |
2.0539 | 1.8072 | 1800 | 2.5661 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3