pkbiswas's picture
Update README.md
365eb76 verified
metadata
library_name: peft
license: mit
base_model: deepseek-ai/DeepSeek-R1-Distill-Llama-8B
tags:
  - generated_from_trainer
datasets:
  - scitldr
model-index:
  - name: DeepSeek-R1-Distill-Llama-8B-Summarization-QLoRa
    results: []
pipeline_tag: summarization

DeepSeek-R1-Distill-Llama-8B-Summarization-QLoRa

This model is a fine-tuned version of deepseek-ai/DeepSeek-R1-Distill-Llama-8B on the scitldr dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5393

Model description

DeepSeek-R1-Distill-Llama-8B fine-tuned for summarization of scientific documents

Intended uses & limitations

Summarization

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use OptimizerNames.PAGED_ADAMW with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
2.459 0.2209 220 2.4903
2.3971 0.4418 440 2.4720
2.3821 0.6627 660 2.4550
2.3665 0.8835 880 2.4392
2.3582 1.1044 1100 2.5203
1.7824 1.3253 1320 2.5360
1.7599 1.5462 1540 2.5486
1.7352 1.7671 1760 2.5404
1.7088 1.9880 1980 2.5393

Framework versions

  • PEFT 0.14.0
  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0