pjdevelop's picture
Create model.py
d5d2569 verified
raw
history blame
1.22 kB
import torch
import torchvision.transforms as T
from PIL import Image
import joblib
import json
import cv2
import gradio as gr
# Define image transformation
transform_image = T.Compose([
T.ToTensor(),
T.Resize(244),
T.CenterCrop(224),
T.Normalize([0.5], [0.5])
])
def load_image(img: str) -> torch.Tensor:
"""
Load an image and return a tensor that can be used as an input to DINOv2.
"""
img = Image.open(img)
transformed_img = transform_image(img)[:3].unsqueeze(0)
return transformed_img
# Load models for inference
dinov2_vits14 = torch.hub.load("facebookresearch/dinov2", "dinov2_vits14")
device = torch.device('cuda' if torch.cuda.is_available() else "cpu")
dinov2_vits14.to(device)
dinov2_vits14.eval() # Set the model to evaluation mode
# Load the classifier
clf = joblib.load('svm_model.joblib')
# Load the embeddings
with open('all_embeddings.json', 'r') as f:
embeddings = json.load(f)
# Predict class for a new image
def predict(image_path):
new_image = load_image(image_path).to(device)
with torch.no_grad():
embedding = dinov2_vits14(new_image).cpu().numpy().reshape(1, -1)
prediction = clf.predict(embedding)
return prediction[0]