metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:124788
- loss:GISTEmbedLoss
base_model: BAAI/bge-m3
widget:
- source_sentence: 其他机械、设备和有形货物租赁服务代表
sentences:
- 其他机械和设备租赁服务工作人员
- 电子和电信设备及零部件物流经理
- 工业主厨
- source_sentence: 公交车司机
sentences:
- 表演灯光设计师
- 乙烯基地板安装工
- 国际巴士司机
- source_sentence: online communication manager
sentences:
- trades union official
- social media manager
- budget manager
- source_sentence: Projektmanagerin
sentences:
- Projektmanager/Projektmanagerin
- Category-Manager
- Infanterist
- source_sentence: Volksvertreter
sentences:
- Parlamentarier
- Oberbürgermeister
- Konsul
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@20
- cosine_accuracy@50
- cosine_accuracy@100
- cosine_accuracy@150
- cosine_accuracy@200
- cosine_precision@1
- cosine_precision@20
- cosine_precision@50
- cosine_precision@100
- cosine_precision@150
- cosine_precision@200
- cosine_recall@1
- cosine_recall@20
- cosine_recall@50
- cosine_recall@100
- cosine_recall@150
- cosine_recall@200
- cosine_ndcg@1
- cosine_ndcg@20
- cosine_ndcg@50
- cosine_ndcg@100
- cosine_ndcg@150
- cosine_ndcg@200
- cosine_mrr@1
- cosine_mrr@20
- cosine_mrr@50
- cosine_mrr@100
- cosine_mrr@150
- cosine_mrr@200
- cosine_map@1
- cosine_map@20
- cosine_map@50
- cosine_map@100
- cosine_map@150
- cosine_map@200
- cosine_map@500
model-index:
- name: SentenceTransformer based on BAAI/bge-m3
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full en
type: full_en
metrics:
- type: cosine_accuracy@1
value: 0.6476190476190476
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9904761904761905
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.9904761904761905
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9904761904761905
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9904761904761905
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9904761904761905
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.6476190476190476
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.5061904761904762
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.30647619047619057
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.1858095238095238
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.13250793650793652
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.10247619047619047
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.06690172806447445
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.5391510592522911
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.7199711948587544
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.8253770621157605
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.8719997123512196
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.9006382758109558
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.6476190476190476
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.6822066814233797
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.6975329548006446
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.7519637922809941
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.7724946802449859
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.7827357067553371
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.6476190476190476
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.7999999999999998
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.7999999999999998
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.7999999999999998
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.7999999999999998
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.7999999999999998
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.6476190476190476
name: Cosine Map@1
- type: cosine_map@20
value: 0.5391784054866918
name: Cosine Map@20
- type: cosine_map@50
value: 0.5258287715484311
name: Cosine Map@50
- type: cosine_map@100
value: 0.5580109313638075
name: Cosine Map@100
- type: cosine_map@150
value: 0.5665715227835532
name: Cosine Map@150
- type: cosine_map@200
value: 0.569529009182472
name: Cosine Map@200
- type: cosine_map@500
value: 0.5743595458034346
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full es
type: full_es
metrics:
- type: cosine_accuracy@1
value: 0.11351351351351352
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 1
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 1
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 1
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 1
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 1
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.11351351351351352
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.5667567567567567
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.3902702702702703
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.25254054054054054
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.19005405405405407
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.1507837837837838
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.0035155918996302815
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.37958552840441906
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.5635730197468752
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.672698242387141
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.7360036980055802
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.7697561816436992
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.11351351351351352
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.6136401766234348
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.5908459924766464
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.6168063266629416
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.6488575731321932
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.665316090087272
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.11351351351351352
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.5536036036036036
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.5536036036036036
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.5536036036036036
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.5536036036036036
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.5536036036036036
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.11351351351351352
name: Cosine Map@1
- type: cosine_map@20
value: 0.48095830339282386
name: Cosine Map@20
- type: cosine_map@50
value: 0.43038606337879926
name: Cosine Map@50
- type: cosine_map@100
value: 0.4335284717646407
name: Cosine Map@100
- type: cosine_map@150
value: 0.44851036812148526
name: Cosine Map@150
- type: cosine_map@200
value: 0.4550924585301385
name: Cosine Map@200
- type: cosine_map@500
value: 0.4677023132311536
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full de
type: full_de
metrics:
- type: cosine_accuracy@1
value: 0.2955665024630542
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9852216748768473
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.9901477832512315
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9901477832512315
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9901477832512315
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9901477832512315
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.2955665024630542
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.5403940886699506
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.38275862068965516
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.2503448275862069
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.187816091954023
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.15027093596059116
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.01108543831680986
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.3432684453555553
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.5339871522541048
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.6498636280219438
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.7100921836539074
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.7513351913056898
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.2955665024630542
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.5647628262992046
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.5522057083055792
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.5796033728499559
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.6111851705889818
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.6309313367878393
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.2955665024630542
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.5164425017655958
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.516559790060224
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.516559790060224
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.516559790060224
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.516559790060224
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.2955665024630542
name: Cosine Map@1
- type: cosine_map@20
value: 0.4221760589983628
name: Cosine Map@20
- type: cosine_map@50
value: 0.37913413777890953
name: Cosine Map@50
- type: cosine_map@100
value: 0.3829298798486122
name: Cosine Map@100
- type: cosine_map@150
value: 0.39811624371681004
name: Cosine Map@150
- type: cosine_map@200
value: 0.40559711033541546
name: Cosine Map@200
- type: cosine_map@500
value: 0.4188841643667456
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full zh
type: full_zh
metrics:
- type: cosine_accuracy@1
value: 0.6796116504854369
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9902912621359223
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.9902912621359223
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9902912621359223
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9902912621359223
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9902912621359223
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.6796116504854369
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.470873786407767
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.28038834951456315
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.17320388349514557
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.12394822006472495
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.09766990291262137
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.06427555485009323
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.5119331913488326
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.6726577129232287
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.788021792964523
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.8328962977521837
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.8687397875786594
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.6796116504854369
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.6515292076635256
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.6598571989751485
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.7157338182976709
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.7357126940189814
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.7500853808896866
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.6796116504854369
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.8216828478964402
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.8216828478964402
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.8216828478964402
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.8216828478964402
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.8216828478964402
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.6796116504854369
name: Cosine Map@1
- type: cosine_map@20
value: 0.5012149610968577
name: Cosine Map@20
- type: cosine_map@50
value: 0.48128476255481567
name: Cosine Map@50
- type: cosine_map@100
value: 0.5105374388587102
name: Cosine Map@100
- type: cosine_map@150
value: 0.518381647971727
name: Cosine Map@150
- type: cosine_map@200
value: 0.5228375783347256
name: Cosine Map@200
- type: cosine_map@500
value: 0.52765377953199
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: mix es
type: mix_es
metrics:
- type: cosine_accuracy@1
value: 0.7394695787831513
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9635985439417577
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.982839313572543
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9927197087883516
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9947997919916797
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9963598543941757
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.7394695787831513
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.12488299531981278
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.05174206968278733
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.02629225169006761
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.017635638758883684
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.013281331253250133
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.28537503404898107
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.9225949037961519
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.9548015253943491
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.970532154619518
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.9766337320159473
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.9810747096550528
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.7394695787831513
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.8119072371250002
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.8208055075822587
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.8242798548838444
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.8254601712767063
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.826231823086538
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.7394695787831513
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.8059183822863336
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.8065662458714291
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.8067209669800003
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.8067371899834064
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.8067455244059942
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.7394695787831513
name: Cosine Map@1
- type: cosine_map@20
value: 0.7439811728319751
name: Cosine Map@20
- type: cosine_map@50
value: 0.7464542457655368
name: Cosine Map@50
- type: cosine_map@100
value: 0.7469341154545359
name: Cosine Map@100
- type: cosine_map@150
value: 0.7470471963812441
name: Cosine Map@150
- type: cosine_map@200
value: 0.7471010455519603
name: Cosine Map@200
- type: cosine_map@500
value: 0.7471920688836787
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: mix de
type: mix_de
metrics:
- type: cosine_accuracy@1
value: 0.6926677067082684
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9641185647425897
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.983879355174207
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9921996879875195
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9932397295891836
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9942797711908476
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.6926677067082684
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.12797711908476336
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.053281331253250144
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.027051482059282376
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.018110591090310275
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.013619344773790953
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.2603830819899463
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.928479805858901
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.9650286011440458
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.9796325186340786
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.9837060149072628
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.9862194487779511
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.6926677067082684
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.7967328692326251
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.8068705787791701
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.810158579950017
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.8109641919896999
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.8114360342473703
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.6926677067082684
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.7766838069642311
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.7773792960985305
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.7775026273925645
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.7775124036000293
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.7775182983569378
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.6926677067082684
name: Cosine Map@1
- type: cosine_map@20
value: 0.7210301157895639
name: Cosine Map@20
- type: cosine_map@50
value: 0.7237555751939095
name: Cosine Map@50
- type: cosine_map@100
value: 0.7242426468613273
name: Cosine Map@100
- type: cosine_map@150
value: 0.7243265313145111
name: Cosine Map@150
- type: cosine_map@200
value: 0.7243628241480395
name: Cosine Map@200
- type: cosine_map@500
value: 0.7244144669299598
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: mix zh
type: mix_zh
metrics:
- type: cosine_accuracy@1
value: 0.17888715548621945
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 1
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 1
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 1
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 1
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 1
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.17888715548621945
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.15439417576703063
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.0617576703068123
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.03087883515340615
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.020585890102270757
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.015439417576703075
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.05768764083896689
name: Cosine Recall@1
- type: cosine_recall@20
value: 1
name: Cosine Recall@20
- type: cosine_recall@50
value: 1
name: Cosine Recall@50
- type: cosine_recall@100
value: 1
name: Cosine Recall@100
- type: cosine_recall@150
value: 1
name: Cosine Recall@150
- type: cosine_recall@200
value: 1
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.17888715548621945
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.5443156532634228
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.5443156532634228
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.5443156532634228
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.5443156532634228
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.5443156532634228
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.17888715548621945
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.4002437442375043
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.4002437442375043
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.4002437442375043
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.4002437442375043
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.4002437442375043
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.17888715548621945
name: Cosine Map@1
- type: cosine_map@20
value: 0.32718437256695937
name: Cosine Map@20
- type: cosine_map@50
value: 0.32718437256695937
name: Cosine Map@50
- type: cosine_map@100
value: 0.32718437256695937
name: Cosine Map@100
- type: cosine_map@150
value: 0.32718437256695937
name: Cosine Map@150
- type: cosine_map@200
value: 0.32718437256695937
name: Cosine Map@200
- type: cosine_map@500
value: 0.32718437256695937
name: Cosine Map@500
Job - Job matching finetuned BAAI/bge-m3
Top performing model on TalentCLEF 2025 Task A. Use it for multilingual job title matching
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-m3
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Datasets:
- full_en
- full_de
- full_es
- full_zh
- mix
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("pj-mathematician/JobBGE-m3")
# Run inference
sentences = [
'Volksvertreter',
'Parlamentarier',
'Oberbürgermeister',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
full_en
,full_es
,full_de
,full_zh
,mix_es
,mix_de
andmix_zh
- Evaluated with
InformationRetrievalEvaluator
Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh |
---|---|---|---|---|---|---|---|
cosine_accuracy@1 | 0.6476 | 0.1135 | 0.2956 | 0.6796 | 0.7395 | 0.6927 | 0.1789 |
cosine_accuracy@20 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9636 | 0.9641 | 1.0 |
cosine_accuracy@50 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9828 | 0.9839 | 1.0 |
cosine_accuracy@100 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9927 | 0.9922 | 1.0 |
cosine_accuracy@150 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9948 | 0.9932 | 1.0 |
cosine_accuracy@200 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9964 | 0.9943 | 1.0 |
cosine_precision@1 | 0.6476 | 0.1135 | 0.2956 | 0.6796 | 0.7395 | 0.6927 | 0.1789 |
cosine_precision@20 | 0.5062 | 0.5668 | 0.5404 | 0.4709 | 0.1249 | 0.128 | 0.1544 |
cosine_precision@50 | 0.3065 | 0.3903 | 0.3828 | 0.2804 | 0.0517 | 0.0533 | 0.0618 |
cosine_precision@100 | 0.1858 | 0.2525 | 0.2503 | 0.1732 | 0.0263 | 0.0271 | 0.0309 |
cosine_precision@150 | 0.1325 | 0.1901 | 0.1878 | 0.1239 | 0.0176 | 0.0181 | 0.0206 |
cosine_precision@200 | 0.1025 | 0.1508 | 0.1503 | 0.0977 | 0.0133 | 0.0136 | 0.0154 |
cosine_recall@1 | 0.0669 | 0.0035 | 0.0111 | 0.0643 | 0.2854 | 0.2604 | 0.0577 |
cosine_recall@20 | 0.5392 | 0.3796 | 0.3433 | 0.5119 | 0.9226 | 0.9285 | 1.0 |
cosine_recall@50 | 0.72 | 0.5636 | 0.534 | 0.6727 | 0.9548 | 0.965 | 1.0 |
cosine_recall@100 | 0.8254 | 0.6727 | 0.6499 | 0.788 | 0.9705 | 0.9796 | 1.0 |
cosine_recall@150 | 0.872 | 0.736 | 0.7101 | 0.8329 | 0.9766 | 0.9837 | 1.0 |
cosine_recall@200 | 0.9006 | 0.7698 | 0.7513 | 0.8687 | 0.9811 | 0.9862 | 1.0 |
cosine_ndcg@1 | 0.6476 | 0.1135 | 0.2956 | 0.6796 | 0.7395 | 0.6927 | 0.1789 |
cosine_ndcg@20 | 0.6822 | 0.6136 | 0.5648 | 0.6515 | 0.8119 | 0.7967 | 0.5443 |
cosine_ndcg@50 | 0.6975 | 0.5908 | 0.5522 | 0.6599 | 0.8208 | 0.8069 | 0.5443 |
cosine_ndcg@100 | 0.752 | 0.6168 | 0.5796 | 0.7157 | 0.8243 | 0.8102 | 0.5443 |
cosine_ndcg@150 | 0.7725 | 0.6489 | 0.6112 | 0.7357 | 0.8255 | 0.811 | 0.5443 |
cosine_ndcg@200 | 0.7827 | 0.6653 | 0.6309 | 0.7501 | 0.8262 | 0.8114 | 0.5443 |
cosine_mrr@1 | 0.6476 | 0.1135 | 0.2956 | 0.6796 | 0.7395 | 0.6927 | 0.1789 |
cosine_mrr@20 | 0.8 | 0.5536 | 0.5164 | 0.8217 | 0.8059 | 0.7767 | 0.4002 |
cosine_mrr@50 | 0.8 | 0.5536 | 0.5166 | 0.8217 | 0.8066 | 0.7774 | 0.4002 |
cosine_mrr@100 | 0.8 | 0.5536 | 0.5166 | 0.8217 | 0.8067 | 0.7775 | 0.4002 |
cosine_mrr@150 | 0.8 | 0.5536 | 0.5166 | 0.8217 | 0.8067 | 0.7775 | 0.4002 |
cosine_mrr@200 | 0.8 | 0.5536 | 0.5166 | 0.8217 | 0.8067 | 0.7775 | 0.4002 |
cosine_map@1 | 0.6476 | 0.1135 | 0.2956 | 0.6796 | 0.7395 | 0.6927 | 0.1789 |
cosine_map@20 | 0.5392 | 0.481 | 0.4222 | 0.5012 | 0.744 | 0.721 | 0.3272 |
cosine_map@50 | 0.5258 | 0.4304 | 0.3791 | 0.4813 | 0.7465 | 0.7238 | 0.3272 |
cosine_map@100 | 0.558 | 0.4335 | 0.3829 | 0.5105 | 0.7469 | 0.7242 | 0.3272 |
cosine_map@150 | 0.5666 | 0.4485 | 0.3981 | 0.5184 | 0.747 | 0.7243 | 0.3272 |
cosine_map@200 | 0.5695 | 0.4551 | 0.4056 | 0.5228 | 0.7471 | 0.7244 | 0.3272 |
cosine_map@500 | 0.5744 | 0.4677 | 0.4189 | 0.5277 | 0.7472 | 0.7244 | 0.3272 |
Training Details
Training Datasets
full_en
full_en
- Dataset: full_en
- Size: 28,880 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 3 tokens
- mean: 5.68 tokens
- max: 11 tokens
- min: 3 tokens
- mean: 5.76 tokens
- max: 12 tokens
- Samples:
anchor positive air commodore
flight lieutenant
command and control officer
flight officer
air commodore
command and control officer
- Loss:
GISTEmbedLoss
with these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
full_de
full_de
- Dataset: full_de
- Size: 23,023 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 3 tokens
- mean: 7.99 tokens
- max: 30 tokens
- min: 3 tokens
- mean: 8.19 tokens
- max: 30 tokens
- Samples:
anchor positive Staffelkommandantin
Kommodore
Luftwaffenoffizierin
Luftwaffenoffizier/Luftwaffenoffizierin
Staffelkommandantin
Luftwaffenoffizierin
- Loss:
GISTEmbedLoss
with these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
full_es
full_es
- Dataset: full_es
- Size: 20,724 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 3 tokens
- mean: 9.13 tokens
- max: 32 tokens
- min: 3 tokens
- mean: 8.84 tokens
- max: 32 tokens
- Samples:
anchor positive jefe de escuadrón
instructor
comandante de aeronave
instructor de simulador
instructor
oficial del Ejército del Aire
- Loss:
GISTEmbedLoss
with these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
full_zh
full_zh
- Dataset: full_zh
- Size: 30,401 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 5 tokens
- mean: 7.15 tokens
- max: 14 tokens
- min: 5 tokens
- mean: 7.46 tokens
- max: 21 tokens
- Samples:
anchor positive 技术总监
技术和运营总监
技术总监
技术主管
技术总监
技术艺术总监
- Loss:
GISTEmbedLoss
with these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
mix
mix
- Dataset: mix
- Size: 21,760 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 2 tokens
- mean: 6.71 tokens
- max: 19 tokens
- min: 2 tokens
- mean: 7.69 tokens
- max: 19 tokens
- Samples:
anchor positive technical manager
Technischer Direktor für Bühne, Film und Fernsehen
head of technical
directora técnica
head of technical department
技术艺术总监
- Loss:
GISTEmbedLoss
with these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 128gradient_accumulation_steps
: 2num_train_epochs
: 5warmup_ratio
: 0.05log_on_each_node
: Falsefp16
: Truedataloader_num_workers
: 4ddp_find_unused_parameters
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.05warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Falselogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 4dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Trueddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 |
---|---|---|---|---|---|---|---|---|---|
-1 | -1 | - | 0.6856 | 0.5207 | 0.4655 | 0.6713 | 0.6224 | 0.5604 | 0.5548 |
0.0010 | 1 | 5.3354 | - | - | - | - | - | - | - |
0.1027 | 100 | 2.665 | - | - | - | - | - | - | - |
0.2053 | 200 | 1.3375 | 0.7691 | 0.6530 | 0.6298 | 0.7517 | 0.7513 | 0.7393 | 0.5490 |
0.3080 | 300 | 1.1101 | - | - | - | - | - | - | - |
0.4107 | 400 | 0.9453 | 0.7802 | 0.6643 | 0.6246 | 0.7531 | 0.7610 | 0.7441 | 0.5493 |
0.5133 | 500 | 0.9202 | - | - | - | - | - | - | - |
0.6160 | 600 | 0.7887 | 0.7741 | 0.6549 | 0.6171 | 0.7542 | 0.7672 | 0.7540 | 0.5482 |
0.7187 | 700 | 0.7604 | - | - | - | - | - | - | - |
0.8214 | 800 | 0.7219 | 0.7846 | 0.6674 | 0.6244 | 0.7648 | 0.7741 | 0.7592 | 0.5497 |
0.9240 | 900 | 0.6965 | - | - | - | - | - | - | - |
1.0267 | 1000 | 0.6253 | 0.7646 | 0.6391 | 0.6122 | 0.7503 | 0.7825 | 0.7704 | 0.5463 |
1.1294 | 1100 | 0.4737 | - | - | - | - | - | - | - |
1.2320 | 1200 | 0.5055 | 0.7758 | 0.6582 | 0.6178 | 0.7514 | 0.7857 | 0.7764 | 0.5501 |
1.3347 | 1300 | 0.5042 | - | - | - | - | - | - | - |
1.4374 | 1400 | 0.5073 | 0.7613 | 0.6578 | 0.6178 | 0.7505 | 0.7829 | 0.7762 | 0.5452 |
1.5400 | 1500 | 0.4975 | - | - | - | - | - | - | - |
1.6427 | 1600 | 0.5242 | 0.7736 | 0.6673 | 0.6279 | 0.7555 | 0.7940 | 0.7859 | 0.5477 |
1.7454 | 1700 | 0.4713 | - | - | - | - | - | - | - |
1.8480 | 1800 | 0.4814 | 0.7845 | 0.6733 | 0.6285 | 0.7642 | 0.7992 | 0.7904 | 0.5449 |
1.9507 | 1900 | 0.4526 | - | - | - | - | - | - | - |
2.0544 | 2000 | 0.36 | 0.7790 | 0.6639 | 0.6252 | 0.7500 | 0.8032 | 0.7888 | 0.5499 |
2.1571 | 2100 | 0.3744 | - | - | - | - | - | - | - |
2.2598 | 2200 | 0.3031 | 0.7787 | 0.6614 | 0.6190 | 0.7537 | 0.7993 | 0.7811 | 0.5476 |
2.3624 | 2300 | 0.3638 | - | - | - | - | - | - | - |
2.4651 | 2400 | 0.358 | 0.7798 | 0.6615 | 0.6258 | 0.7497 | 0.8018 | 0.7828 | 0.5481 |
2.5678 | 2500 | 0.3247 | - | - | - | - | - | - | - |
2.6704 | 2600 | 0.3247 | 0.7854 | 0.6663 | 0.6248 | 0.7560 | 0.8081 | 0.7835 | 0.5452 |
2.7731 | 2700 | 0.3263 | - | - | - | - | - | - | - |
2.8758 | 2800 | 0.3212 | 0.7761 | 0.6681 | 0.6250 | 0.7517 | 0.8121 | 0.7927 | 0.5458 |
2.9784 | 2900 | 0.3291 | - | - | - | - | - | - | - |
3.0821 | 3000 | 0.2816 | 0.7727 | 0.6604 | 0.6163 | 0.7370 | 0.8163 | 0.7985 | 0.5473 |
3.1848 | 3100 | 0.2698 | - | - | - | - | - | - | - |
3.2875 | 3200 | 0.2657 | 0.7757 | 0.6615 | 0.6247 | 0.7417 | 0.8117 | 0.8004 | 0.5436 |
3.3901 | 3300 | 0.2724 | - | - | - | - | - | - | - |
3.4928 | 3400 | 0.2584 | 0.7850 | 0.6583 | 0.6320 | 0.7458 | 0.8120 | 0.7980 | 0.5454 |
3.5955 | 3500 | 0.2573 | - | - | - | - | - | - | - |
3.6982 | 3600 | 0.2744 | 0.7796 | 0.6552 | 0.6237 | 0.7409 | 0.8193 | 0.8018 | 0.5466 |
3.8008 | 3700 | 0.3054 | - | - | - | - | - | - | - |
3.9035 | 3800 | 0.2727 | 0.7825 | 0.6642 | 0.6293 | 0.7504 | 0.8213 | 0.8058 | 0.5463 |
4.0062 | 3900 | 0.2353 | - | - | - | - | - | - | - |
4.1088 | 4000 | 0.2353 | 0.7747 | 0.6628 | 0.6263 | 0.7384 | 0.8239 | 0.8065 | 0.5447 |
4.2115 | 4100 | 0.2385 | - | - | - | - | - | - | - |
4.3142 | 4200 | 0.231 | 0.7811 | 0.6608 | 0.6254 | 0.7463 | 0.8226 | 0.8051 | 0.5442 |
4.4168 | 4300 | 0.2115 | - | - | - | - | - | - | - |
4.5195 | 4400 | 0.2151 | 0.7815 | 0.6634 | 0.6301 | 0.7489 | 0.8251 | 0.8101 | 0.5450 |
4.6222 | 4500 | 0.2496 | - | - | - | - | - | - | - |
4.7248 | 4600 | 0.2146 | 0.7814 | 0.6654 | 0.6294 | 0.7523 | 0.8258 | 0.8104 | 0.5436 |
4.8275 | 4700 | 0.2535 | - | - | - | - | - | - | - |
4.9302 | 4800 | 0.2058 | 0.7827 | 0.6653 | 0.6309 | 0.7501 | 0.8262 | 0.8114 | 0.5443 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 4.1.0
- Transformers: 4.51.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
GISTEmbedLoss
@misc{solatorio2024gistembed,
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
author={Aivin V. Solatorio},
year={2024},
eprint={2402.16829},
archivePrefix={arXiv},
primaryClass={cs.LG}
}