metadata
language:
- en
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- Dev372/Medical_STT_Dataset_1.1
metrics:
- wer
model-index:
- name: OutcomesAI-Whisper-tiny-v1.0
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Medical_STT_Dataset_1.1
type: Dev372/Medical_STT_Dataset_1.1
args: 'config: en, split: test'
metrics:
- name: Wer
type: wer
value: 7.224272510532676
OutcomesAI-Whisper-tiny-v1.0
This model is a fine-tuned version of openai/whisper-tiny on the Medical_STT_Dataset_1.1 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1675
- Wer: 7.2243
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.1067 | 2.5126 | 1000 | 0.1600 | 7.2308 |
0.0329 | 5.0251 | 2000 | 0.1479 | 6.5809 |
0.0131 | 7.5377 | 3000 | 0.1596 | 7.4104 |
0.0192 | 10.0503 | 4000 | 0.1675 | 7.2243 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1