piyushmaharana's picture
End of training
1bc3bb2 verified
metadata
language:
  - en
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - Dev372/Medical_STT_Dataset_1.1
metrics:
  - wer
model-index:
  - name: OutcomesAI-Whisper-tiny-v1.0
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Medical_STT_Dataset_1.1
          type: Dev372/Medical_STT_Dataset_1.1
          args: 'config: en, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 7.224272510532676

OutcomesAI-Whisper-tiny-v1.0

This model is a fine-tuned version of openai/whisper-tiny on the Medical_STT_Dataset_1.1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1675
  • Wer: 7.2243

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1067 2.5126 1000 0.1600 7.2308
0.0329 5.0251 2000 0.1479 6.5809
0.0131 7.5377 3000 0.1596 7.4104
0.0192 10.0503 4000 0.1675 7.2243

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1