{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff65916a3b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff65916a440>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff65916a4d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff65916a560>", "_build": "<function ActorCriticPolicy._build at 0x7ff65916a5f0>", "forward": "<function ActorCriticPolicy.forward at 0x7ff65916a680>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff65916a710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff65916a7a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff65916a830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff65916a8c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff65916a950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff65916a9e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff5f8116880>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683896086751985219, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE22Bj38LL4+umCjvdXdSb4+SPS71v2oPQAAAAAAAAAAAHBTOxhHsz3NKHW9tp9xvk3wsbvWmFi9AAAAAAAAAAAghHQ+P/FjP6hBNz2vp3a+9iCCPpZwBL4AAAAAAAAAAHMVKj6YJZI/mnZ0PbKEV75slUA+WC3OvQAAAAAAAAAAzQwCOh/N3rlPQYqzgy93r86Mg7ks0bEzAACAPwAAgD9mcjY+8leCP2Bp0L6So3y+6Voavag1jL4AAAAAAAAAAIBwkb1cKgy8+w7lPVQx+romAnW9y6vQuwAAgD8AAIA/fSNjvh0JFD9ib2w++tGevhprT7uuY+A9AAAAAAAAAACauv28FgOJP8Wu1bzECb++yk/RvHLWJD0AAAAAAAAAAM2BXr03Nmw+64uPvaHDir5m7U29FCadvQAAAAAAAAAAwAGUvcMZZLqqabI3RgGuMvCDgDq1mtG2AACAPwAAgD+zP3u9KfgAunY9Xbrwn5G1iGheOmBEfjkAAIA/AACAP1rF2727LNo9vgZiPUEgVb4r9nw7CvJwvQAAAAAAAAAAzVCMO6clYj9JVqw8qXylvqbW47wDHV+9AAAAAAAAAADN2ya9UkDHuzrO5T1K1aC9hQ4ivXrMib4AAIA/AACAP3PNCT7p348/OMIcPm09jL7nbDY+ino1PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGzquJcgQpaMAWyUTSEBjAF0lEdAkSR1PrOZ9nV9lChoBkdAb+L8uSOinGgHTScBaAhHQJEksVIqbz91fZQoaAZHQHKPxUvPC2toB01JAWgIR0CRJUYLb5/LdX2UKGgGR0Bwq4fyPMjeaAdNEgFoCEdAkSZR24d6s3V9lChoBkdAbXjYraufVmgHTTUBaAhHQJEmd/SYw7F1fZQoaAZHQHKXpuVHFxZoB000AWgIR0CRJx3aSLZSdX2UKGgGR0Bw0Y8gZCOWaAdNHwFoCEdAkSkUMoc7yXV9lChoBkdAcIx+/xlQM2gHTQwBaAhHQJEqXVCojwB1fZQoaAZHQGwRo6Kcd5poB00xAWgIR0CRLMWS2Yv4dX2UKGgGR0Bwrv+ERJ2/aAdNKQFoCEdAkSzxG6PKdXV9lChoBkdAcSJN3np0OmgHTSMBaAhHQJEtl24d6s11fZQoaAZHQG5Z+zD4xlBoB00PAWgIR0CRLdH2AXl9dX2UKGgGR0BskCnHeaa1aAdNJAFoCEdAkS3ulCTlk3V9lChoBkdAcQwN2TxG2GgHTQQBaAhHQJEuaVE/jbV1fZQoaAZHQHCmL6P8yetoB01FAWgIR0CRLtp2ECeVdX2UKGgGR0BvosCaJAMVaAdNPwFoCEdAkS73NcGC7XV9lChoBkdAbtUc4o7V8WgHTSIBaAhHQJEwpTtLL6l1fZQoaAZHQGuptHQQcxVoB00qAWgIR0CRMRQNCqp+dX2UKGgGR0BwgGgpSaVlaAdNMwFoCEdAkTIbTH80lHV9lChoBkdAcgCgogFHKGgHTUsCaAhHQJEysjnmq5t1fZQoaAZHQHAOnH7xd6doB02kAWgIR0CRMws3yZrpdX2UKGgGR0Bxqc7eVLSNaAdL/2gIR0CRM2dTYNAkdX2UKGgGR0BxU6r92ovSaAdNSQFoCEdAkTSY0/GEPHV9lChoBkdAbq+12q1gIGgHTQwBaAhHQJE1qH0se4l1fZQoaAZHQHGvobn5i3JoB00RAWgIR0CRNfgJkXk6dX2UKGgGR0ByshJFspG4aAdNAQFoCEdAkTZDwUg0THV9lChoBkdAcDeh5gPVeGgHTREBaAhHQJE322gFotd1fZQoaAZHQHEeoj0L+gloB007AWgIR0CRODV2zOX3dX2UKGgGR0BwMTjDKoycaAdNVgFoCEdAkTj67Ackt3V9lChoBkdAcIR8NQTEi2gHTToBaAhHQJE5QX9BKL91fZQoaAZHQG2LzrVvuPVoB01XAWgIR0CROcuOCGvfdX2UKGgGR0BwpjcJtzjnaAdNPwFoCEdAkTserdWQwXV9lChoBkdAcB8EfDDTB2gHS/ZoCEdAkTsnOnl4knV9lChoBkdAcEM+5e7cwmgHTUsBaAhHQJE77qPfbbl1fZQoaAZHQG8VNo8IRiBoB00fAWgIR0CRPCecQRPHdX2UKGgGR0BwdX0HyEteaAdNQAFoCEdAkT/pobn5i3V9lChoBkdAbwRmHP/rB2gHTRsBaAhHQJFADnJT2nN1fZQoaAZHQG2wvnB+F11oB00wAWgIR0CRQpkn1FpgdX2UKGgGR0BwBI2VE/jbaAdNLwFoCEdAkUL7GvOhTXV9lChoBkdAcF/cZccENmgHTSwBaAhHQJFDQtCiRGN1fZQoaAZHQHEAHS0BwMpoB00OAWgIR0CRRAOhTOxCdX2UKGgGR0BYmUfcN6PbaAdN6ANoCEdAkUWSUX531XV9lChoBkdAbRq0/nnuA2gHTTUBaAhHQJFHymWMS9N1fZQoaAZHQG+Z9KmKqGVoB01RAWgIR0CRSDIt16mgdX2UKGgGR0BxKv5aePJaaAdNXQFoCEdAkVxCc5Ke1HV9lChoBkdAcpUK/20zCWgHTTYBaAhHQJFcX4dp7C11fZQoaAZHQHE8w2MsH0NoB02IAWgIR0CRXV4mCyyEdX2UKGgGR0BtY5s41gpjaAdNMwFoCEdAkV17sKLKm3V9lChoBkdAa6TO2RaHK2gHTXEBaAhHQJFerxqfvnd1fZQoaAZHQHIHDjaPCEZoB01lAWgIR0CRXx0k4WDZdX2UKGgGR0BxWYbEP1+RaAdNJQFoCEdAkV8tHMEA53V9lChoBkdAcTFqrzXjEWgHTQ4BaAhHQJFgK3KB/Zx1fZQoaAZHQHEGKDXe3x5oB0v3aAhHQJFgbWWhRIl1fZQoaAZHQHKGVZ5iVjZoB0vfaAhHQJFgogIQe3h1fZQoaAZHQG4pz6rNnoRoB00eAWgIR0CRYPszl90BdX2UKGgGR0BtIemzjWCmaAdNKAFoCEdAkWF/C2tuDXV9lChoBkdAbu0IBzV+Z2gHTSMBaAhHQJFkNVjqfOF1fZQoaAZHQHH+6Y3Ns31oB03KAWgIR0CRZF8v24/edX2UKGgGR0BxWYYGdI5HaAdNNgFoCEdAkWSYdp7CznV9lChoBkdAcQ4kvsZ5zGgHS/poCEdAkWS3BHkLhXV9lChoBkdAcuNq33Hq/2gHTRUBaAhHQJFlqg+Qlrx1fZQoaAZHQHFJhuwX669oB00FAWgIR0CRZgbYsd1ddX2UKGgGR0A5dBxPwd8zaAdL8GgIR0CRZtse4kNXdX2UKGgGR0BxiyjM3ZPEaAdNPQFoCEdAkWfJEQXhwXV9lChoBkdAbBm60Y0l7mgHTaMDaAhHQJFn9vtMPBl1fZQoaAZHQHDdH/T9bX9oB00xAWgIR0CRaPH80k4WdX2UKGgGR0Bv4pun/DLsaAdNBwFoCEdAkWluez2OAHV9lChoBkdAcKSpxm03O2gHTSMBaAhHQJFpjM5fdAR1fZQoaAZHQHB0Rq46Oo5oB00eAWgIR0CRaZr5ZbIMdX2UKGgGR0ByIS6Ymb9ZaAdNVwFoCEdAkWm9roGIK3V9lChoBkdActhhi9ZieGgHTQsBaAhHQJFp8F8ohIR1fZQoaAZHQHD4aIacZtNoB00vAWgIR0CRaiM7lq8EdX2UKGgGR0BvkP4bjtG/aAdNBgFoCEdAkW39pqREGHV9lChoBkdAcRBYFJQLu2gHTRsBaAhHQJFuX5P/JeV1fZQoaAZHQHGhQnc+JP9oB01MAWgIR0CRbqxxT850dX2UKGgGR0BwC8ophF3IaAdNVAFoCEdAkW89cOby6XV9lChoBkdAaunw6QvHtGgHTW4BaAhHQJFvxDKHO8l1fZQoaAZHQG/ObOVxCIFoB00eAWgIR0CRb+AeaKDTdX2UKGgGR0ByRx3fQ8fWaAdNZQFoCEdAkXAEkWykbnV9lChoBkdAbYSdRR/EwWgHTSgBaAhHQJFxQPjGT9t1fZQoaAZHQHFMjoMa0hNoB00vAWgIR0CRcVgx8D0UdX2UKGgGR0BwuhIUahpQaAdNFAFoCEdAkXJMrd30PHV9lChoBkdAcWloZhrnDGgHTRsBaAhHQJFye+yquKZ1fZQoaAZHQG5AroOhCdBoB00ZAWgIR0CRcq64Ds+ndX2UKGgGR0BvH+AAhje9aAdNRQFoCEdAkXM8LfDUE3V9lChoBkdAcVFItlI3BGgHTSMBaAhHQJFzPPUrkKh1fZQoaAZHQG3FgrhBJI1oB007AWgIR0CRc1exOclPdX2UKGgGR0BIz6ya/h2oaAdLwGgIR0CRdZkDZDiPdX2UKGgGR0Bxo7bXYlIFaAdNegFoCEdAkXWnOfNA1XV9lChoBkdAcKaX6InBtWgHS/loCEdAkXWyuloDgnV9lChoBkdAbrsVVxS5y2gHTQ4BaAhHQJF26v7m+0x1fZQoaAZHQHF1OtfXwspoB0vsaAhHQJF3DJ0W/Jx1fZQoaAZHQHIk0KzAvctoB00SAWgIR0CReAOuJUHZdX2UKGgGR0Bw3aCmMwUQaAdNSQFoCEdAkXnIQarFO3V9lChoBkdAclNsLv1DjWgHTREBaAhHQJF6qtRvWH11fZQoaAZHQGx4Y8U21lZoB00WAWgIR0CRewC8OCoTdX2UKGgGR0BwmnM4cWCVaAdNDAFoCEdAkXvudoWYW3V9lChoBkdAbwyW6bvw3GgHTRcBaAhHQJF8rSE12q11fZQoaAZHQHA5+yu6mO5oB010AWgIR0CRfVnFYMfBdX2UKGgGR0BxhYwTM7lraAdNEAFoCEdAkX1w3974SHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |