piperunner
commited on
Commit
•
dc18a72
1
Parent(s):
ba68266
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 265.13 +/- 21.48
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff65916a3b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff65916a440>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff65916a4d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff65916a560>", "_build": "<function ActorCriticPolicy._build at 0x7ff65916a5f0>", "forward": "<function ActorCriticPolicy.forward at 0x7ff65916a680>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff65916a710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff65916a7a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff65916a830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff65916a8c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff65916a950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff65916a9e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff5f8116880>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683896086751985219, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE22Bj38LL4+umCjvdXdSb4+SPS71v2oPQAAAAAAAAAAAHBTOxhHsz3NKHW9tp9xvk3wsbvWmFi9AAAAAAAAAAAghHQ+P/FjP6hBNz2vp3a+9iCCPpZwBL4AAAAAAAAAAHMVKj6YJZI/mnZ0PbKEV75slUA+WC3OvQAAAAAAAAAAzQwCOh/N3rlPQYqzgy93r86Mg7ks0bEzAACAPwAAgD9mcjY+8leCP2Bp0L6So3y+6Voavag1jL4AAAAAAAAAAIBwkb1cKgy8+w7lPVQx+romAnW9y6vQuwAAgD8AAIA/fSNjvh0JFD9ib2w++tGevhprT7uuY+A9AAAAAAAAAACauv28FgOJP8Wu1bzECb++yk/RvHLWJD0AAAAAAAAAAM2BXr03Nmw+64uPvaHDir5m7U29FCadvQAAAAAAAAAAwAGUvcMZZLqqabI3RgGuMvCDgDq1mtG2AACAPwAAgD+zP3u9KfgAunY9Xbrwn5G1iGheOmBEfjkAAIA/AACAP1rF2727LNo9vgZiPUEgVb4r9nw7CvJwvQAAAAAAAAAAzVCMO6clYj9JVqw8qXylvqbW47wDHV+9AAAAAAAAAADN2ya9UkDHuzrO5T1K1aC9hQ4ivXrMib4AAIA/AACAP3PNCT7p348/OMIcPm09jL7nbDY+ino1PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGzquJcgQpaMAWyUTSEBjAF0lEdAkSR1PrOZ9nV9lChoBkdAb+L8uSOinGgHTScBaAhHQJEksVIqbz91fZQoaAZHQHKPxUvPC2toB01JAWgIR0CRJUYLb5/LdX2UKGgGR0Bwq4fyPMjeaAdNEgFoCEdAkSZR24d6s3V9lChoBkdAbXjYraufVmgHTTUBaAhHQJEmd/SYw7F1fZQoaAZHQHKXpuVHFxZoB000AWgIR0CRJx3aSLZSdX2UKGgGR0Bw0Y8gZCOWaAdNHwFoCEdAkSkUMoc7yXV9lChoBkdAcIx+/xlQM2gHTQwBaAhHQJEqXVCojwB1fZQoaAZHQGwRo6Kcd5poB00xAWgIR0CRLMWS2Yv4dX2UKGgGR0Bwrv+ERJ2/aAdNKQFoCEdAkSzxG6PKdXV9lChoBkdAcSJN3np0OmgHTSMBaAhHQJEtl24d6s11fZQoaAZHQG5Z+zD4xlBoB00PAWgIR0CRLdH2AXl9dX2UKGgGR0BskCnHeaa1aAdNJAFoCEdAkS3ulCTlk3V9lChoBkdAcQwN2TxG2GgHTQQBaAhHQJEuaVE/jbV1fZQoaAZHQHCmL6P8yetoB01FAWgIR0CRLtp2ECeVdX2UKGgGR0BvosCaJAMVaAdNPwFoCEdAkS73NcGC7XV9lChoBkdAbtUc4o7V8WgHTSIBaAhHQJEwpTtLL6l1fZQoaAZHQGuptHQQcxVoB00qAWgIR0CRMRQNCqp+dX2UKGgGR0BwgGgpSaVlaAdNMwFoCEdAkTIbTH80lHV9lChoBkdAcgCgogFHKGgHTUsCaAhHQJEysjnmq5t1fZQoaAZHQHAOnH7xd6doB02kAWgIR0CRMws3yZrpdX2UKGgGR0Bxqc7eVLSNaAdL/2gIR0CRM2dTYNAkdX2UKGgGR0BxU6r92ovSaAdNSQFoCEdAkTSY0/GEPHV9lChoBkdAbq+12q1gIGgHTQwBaAhHQJE1qH0se4l1fZQoaAZHQHGvobn5i3JoB00RAWgIR0CRNfgJkXk6dX2UKGgGR0ByshJFspG4aAdNAQFoCEdAkTZDwUg0THV9lChoBkdAcDeh5gPVeGgHTREBaAhHQJE322gFotd1fZQoaAZHQHEeoj0L+gloB007AWgIR0CRODV2zOX3dX2UKGgGR0BwMTjDKoycaAdNVgFoCEdAkTj67Ackt3V9lChoBkdAcIR8NQTEi2gHTToBaAhHQJE5QX9BKL91fZQoaAZHQG2LzrVvuPVoB01XAWgIR0CROcuOCGvfdX2UKGgGR0BwpjcJtzjnaAdNPwFoCEdAkTserdWQwXV9lChoBkdAcB8EfDDTB2gHS/ZoCEdAkTsnOnl4knV9lChoBkdAcEM+5e7cwmgHTUsBaAhHQJE77qPfbbl1fZQoaAZHQG8VNo8IRiBoB00fAWgIR0CRPCecQRPHdX2UKGgGR0BwdX0HyEteaAdNQAFoCEdAkT/pobn5i3V9lChoBkdAbwRmHP/rB2gHTRsBaAhHQJFADnJT2nN1fZQoaAZHQG2wvnB+F11oB00wAWgIR0CRQpkn1FpgdX2UKGgGR0BwBI2VE/jbaAdNLwFoCEdAkUL7GvOhTXV9lChoBkdAcF/cZccENmgHTSwBaAhHQJFDQtCiRGN1fZQoaAZHQHEAHS0BwMpoB00OAWgIR0CRRAOhTOxCdX2UKGgGR0BYmUfcN6PbaAdN6ANoCEdAkUWSUX531XV9lChoBkdAbRq0/nnuA2gHTTUBaAhHQJFHymWMS9N1fZQoaAZHQG+Z9KmKqGVoB01RAWgIR0CRSDIt16mgdX2UKGgGR0BxKv5aePJaaAdNXQFoCEdAkVxCc5Ke1HV9lChoBkdAcpUK/20zCWgHTTYBaAhHQJFcX4dp7C11fZQoaAZHQHE8w2MsH0NoB02IAWgIR0CRXV4mCyyEdX2UKGgGR0BtY5s41gpjaAdNMwFoCEdAkV17sKLKm3V9lChoBkdAa6TO2RaHK2gHTXEBaAhHQJFerxqfvnd1fZQoaAZHQHIHDjaPCEZoB01lAWgIR0CRXx0k4WDZdX2UKGgGR0BxWYbEP1+RaAdNJQFoCEdAkV8tHMEA53V9lChoBkdAcTFqrzXjEWgHTQ4BaAhHQJFgK3KB/Zx1fZQoaAZHQHEGKDXe3x5oB0v3aAhHQJFgbWWhRIl1fZQoaAZHQHKGVZ5iVjZoB0vfaAhHQJFgogIQe3h1fZQoaAZHQG4pz6rNnoRoB00eAWgIR0CRYPszl90BdX2UKGgGR0BtIemzjWCmaAdNKAFoCEdAkWF/C2tuDXV9lChoBkdAbu0IBzV+Z2gHTSMBaAhHQJFkNVjqfOF1fZQoaAZHQHH+6Y3Ns31oB03KAWgIR0CRZF8v24/edX2UKGgGR0BxWYYGdI5HaAdNNgFoCEdAkWSYdp7CznV9lChoBkdAcQ4kvsZ5zGgHS/poCEdAkWS3BHkLhXV9lChoBkdAcuNq33Hq/2gHTRUBaAhHQJFlqg+Qlrx1fZQoaAZHQHFJhuwX669oB00FAWgIR0CRZgbYsd1ddX2UKGgGR0A5dBxPwd8zaAdL8GgIR0CRZtse4kNXdX2UKGgGR0BxiyjM3ZPEaAdNPQFoCEdAkWfJEQXhwXV9lChoBkdAbBm60Y0l7mgHTaMDaAhHQJFn9vtMPBl1fZQoaAZHQHDdH/T9bX9oB00xAWgIR0CRaPH80k4WdX2UKGgGR0Bv4pun/DLsaAdNBwFoCEdAkWluez2OAHV9lChoBkdAcKSpxm03O2gHTSMBaAhHQJFpjM5fdAR1fZQoaAZHQHB0Rq46Oo5oB00eAWgIR0CRaZr5ZbIMdX2UKGgGR0ByIS6Ymb9ZaAdNVwFoCEdAkWm9roGIK3V9lChoBkdActhhi9ZieGgHTQsBaAhHQJFp8F8ohIR1fZQoaAZHQHD4aIacZtNoB00vAWgIR0CRaiM7lq8EdX2UKGgGR0BvkP4bjtG/aAdNBgFoCEdAkW39pqREGHV9lChoBkdAcRBYFJQLu2gHTRsBaAhHQJFuX5P/JeV1fZQoaAZHQHGhQnc+JP9oB01MAWgIR0CRbqxxT850dX2UKGgGR0BwC8ophF3IaAdNVAFoCEdAkW89cOby6XV9lChoBkdAaunw6QvHtGgHTW4BaAhHQJFvxDKHO8l1fZQoaAZHQG/ObOVxCIFoB00eAWgIR0CRb+AeaKDTdX2UKGgGR0ByRx3fQ8fWaAdNZQFoCEdAkXAEkWykbnV9lChoBkdAbYSdRR/EwWgHTSgBaAhHQJFxQPjGT9t1fZQoaAZHQHFMjoMa0hNoB00vAWgIR0CRcVgx8D0UdX2UKGgGR0BwuhIUahpQaAdNFAFoCEdAkXJMrd30PHV9lChoBkdAcWloZhrnDGgHTRsBaAhHQJFye+yquKZ1fZQoaAZHQG5AroOhCdBoB00ZAWgIR0CRcq64Ds+ndX2UKGgGR0BvH+AAhje9aAdNRQFoCEdAkXM8LfDUE3V9lChoBkdAcVFItlI3BGgHTSMBaAhHQJFzPPUrkKh1fZQoaAZHQG3FgrhBJI1oB007AWgIR0CRc1exOclPdX2UKGgGR0BIz6ya/h2oaAdLwGgIR0CRdZkDZDiPdX2UKGgGR0Bxo7bXYlIFaAdNegFoCEdAkXWnOfNA1XV9lChoBkdAcKaX6InBtWgHS/loCEdAkXWyuloDgnV9lChoBkdAbrsVVxS5y2gHTQ4BaAhHQJF26v7m+0x1fZQoaAZHQHF1OtfXwspoB0vsaAhHQJF3DJ0W/Jx1fZQoaAZHQHIk0KzAvctoB00SAWgIR0CReAOuJUHZdX2UKGgGR0Bw3aCmMwUQaAdNSQFoCEdAkXnIQarFO3V9lChoBkdAclNsLv1DjWgHTREBaAhHQJF6qtRvWH11fZQoaAZHQGx4Y8U21lZoB00WAWgIR0CRewC8OCoTdX2UKGgGR0BwmnM4cWCVaAdNDAFoCEdAkXvudoWYW3V9lChoBkdAbwyW6bvw3GgHTRcBaAhHQJF8rSE12q11fZQoaAZHQHA5+yu6mO5oB010AWgIR0CRfVnFYMfBdX2UKGgGR0BxhYwTM7lraAdNEAFoCEdAkX1w3974SHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc44cd130cf90cf47c1070bf8c4bded22cf957aa38e71645b0303529cefacc71
|
3 |
+
size 146747
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff65916a3b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff65916a440>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff65916a4d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff65916a560>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff65916a5f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff65916a680>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff65916a710>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff65916a7a0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff65916a830>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff65916a8c0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff65916a950>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff65916a9e0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ff5f8116880>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1683896086751985219,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE22Bj38LL4+umCjvdXdSb4+SPS71v2oPQAAAAAAAAAAAHBTOxhHsz3NKHW9tp9xvk3wsbvWmFi9AAAAAAAAAAAghHQ+P/FjP6hBNz2vp3a+9iCCPpZwBL4AAAAAAAAAAHMVKj6YJZI/mnZ0PbKEV75slUA+WC3OvQAAAAAAAAAAzQwCOh/N3rlPQYqzgy93r86Mg7ks0bEzAACAPwAAgD9mcjY+8leCP2Bp0L6So3y+6Voavag1jL4AAAAAAAAAAIBwkb1cKgy8+w7lPVQx+romAnW9y6vQuwAAgD8AAIA/fSNjvh0JFD9ib2w++tGevhprT7uuY+A9AAAAAAAAAACauv28FgOJP8Wu1bzECb++yk/RvHLWJD0AAAAAAAAAAM2BXr03Nmw+64uPvaHDir5m7U29FCadvQAAAAAAAAAAwAGUvcMZZLqqabI3RgGuMvCDgDq1mtG2AACAPwAAgD+zP3u9KfgAunY9Xbrwn5G1iGheOmBEfjkAAIA/AACAP1rF2727LNo9vgZiPUEgVb4r9nw7CvJwvQAAAAAAAAAAzVCMO6clYj9JVqw8qXylvqbW47wDHV+9AAAAAAAAAADN2ya9UkDHuzrO5T1K1aC9hQ4ivXrMib4AAIA/AACAP3PNCT7p348/OMIcPm09jL7nbDY+ino1PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGzquJcgQpaMAWyUTSEBjAF0lEdAkSR1PrOZ9nV9lChoBkdAb+L8uSOinGgHTScBaAhHQJEksVIqbz91fZQoaAZHQHKPxUvPC2toB01JAWgIR0CRJUYLb5/LdX2UKGgGR0Bwq4fyPMjeaAdNEgFoCEdAkSZR24d6s3V9lChoBkdAbXjYraufVmgHTTUBaAhHQJEmd/SYw7F1fZQoaAZHQHKXpuVHFxZoB000AWgIR0CRJx3aSLZSdX2UKGgGR0Bw0Y8gZCOWaAdNHwFoCEdAkSkUMoc7yXV9lChoBkdAcIx+/xlQM2gHTQwBaAhHQJEqXVCojwB1fZQoaAZHQGwRo6Kcd5poB00xAWgIR0CRLMWS2Yv4dX2UKGgGR0Bwrv+ERJ2/aAdNKQFoCEdAkSzxG6PKdXV9lChoBkdAcSJN3np0OmgHTSMBaAhHQJEtl24d6s11fZQoaAZHQG5Z+zD4xlBoB00PAWgIR0CRLdH2AXl9dX2UKGgGR0BskCnHeaa1aAdNJAFoCEdAkS3ulCTlk3V9lChoBkdAcQwN2TxG2GgHTQQBaAhHQJEuaVE/jbV1fZQoaAZHQHCmL6P8yetoB01FAWgIR0CRLtp2ECeVdX2UKGgGR0BvosCaJAMVaAdNPwFoCEdAkS73NcGC7XV9lChoBkdAbtUc4o7V8WgHTSIBaAhHQJEwpTtLL6l1fZQoaAZHQGuptHQQcxVoB00qAWgIR0CRMRQNCqp+dX2UKGgGR0BwgGgpSaVlaAdNMwFoCEdAkTIbTH80lHV9lChoBkdAcgCgogFHKGgHTUsCaAhHQJEysjnmq5t1fZQoaAZHQHAOnH7xd6doB02kAWgIR0CRMws3yZrpdX2UKGgGR0Bxqc7eVLSNaAdL/2gIR0CRM2dTYNAkdX2UKGgGR0BxU6r92ovSaAdNSQFoCEdAkTSY0/GEPHV9lChoBkdAbq+12q1gIGgHTQwBaAhHQJE1qH0se4l1fZQoaAZHQHGvobn5i3JoB00RAWgIR0CRNfgJkXk6dX2UKGgGR0ByshJFspG4aAdNAQFoCEdAkTZDwUg0THV9lChoBkdAcDeh5gPVeGgHTREBaAhHQJE322gFotd1fZQoaAZHQHEeoj0L+gloB007AWgIR0CRODV2zOX3dX2UKGgGR0BwMTjDKoycaAdNVgFoCEdAkTj67Ackt3V9lChoBkdAcIR8NQTEi2gHTToBaAhHQJE5QX9BKL91fZQoaAZHQG2LzrVvuPVoB01XAWgIR0CROcuOCGvfdX2UKGgGR0BwpjcJtzjnaAdNPwFoCEdAkTserdWQwXV9lChoBkdAcB8EfDDTB2gHS/ZoCEdAkTsnOnl4knV9lChoBkdAcEM+5e7cwmgHTUsBaAhHQJE77qPfbbl1fZQoaAZHQG8VNo8IRiBoB00fAWgIR0CRPCecQRPHdX2UKGgGR0BwdX0HyEteaAdNQAFoCEdAkT/pobn5i3V9lChoBkdAbwRmHP/rB2gHTRsBaAhHQJFADnJT2nN1fZQoaAZHQG2wvnB+F11oB00wAWgIR0CRQpkn1FpgdX2UKGgGR0BwBI2VE/jbaAdNLwFoCEdAkUL7GvOhTXV9lChoBkdAcF/cZccENmgHTSwBaAhHQJFDQtCiRGN1fZQoaAZHQHEAHS0BwMpoB00OAWgIR0CRRAOhTOxCdX2UKGgGR0BYmUfcN6PbaAdN6ANoCEdAkUWSUX531XV9lChoBkdAbRq0/nnuA2gHTTUBaAhHQJFHymWMS9N1fZQoaAZHQG+Z9KmKqGVoB01RAWgIR0CRSDIt16mgdX2UKGgGR0BxKv5aePJaaAdNXQFoCEdAkVxCc5Ke1HV9lChoBkdAcpUK/20zCWgHTTYBaAhHQJFcX4dp7C11fZQoaAZHQHE8w2MsH0NoB02IAWgIR0CRXV4mCyyEdX2UKGgGR0BtY5s41gpjaAdNMwFoCEdAkV17sKLKm3V9lChoBkdAa6TO2RaHK2gHTXEBaAhHQJFerxqfvnd1fZQoaAZHQHIHDjaPCEZoB01lAWgIR0CRXx0k4WDZdX2UKGgGR0BxWYbEP1+RaAdNJQFoCEdAkV8tHMEA53V9lChoBkdAcTFqrzXjEWgHTQ4BaAhHQJFgK3KB/Zx1fZQoaAZHQHEGKDXe3x5oB0v3aAhHQJFgbWWhRIl1fZQoaAZHQHKGVZ5iVjZoB0vfaAhHQJFgogIQe3h1fZQoaAZHQG4pz6rNnoRoB00eAWgIR0CRYPszl90BdX2UKGgGR0BtIemzjWCmaAdNKAFoCEdAkWF/C2tuDXV9lChoBkdAbu0IBzV+Z2gHTSMBaAhHQJFkNVjqfOF1fZQoaAZHQHH+6Y3Ns31oB03KAWgIR0CRZF8v24/edX2UKGgGR0BxWYYGdI5HaAdNNgFoCEdAkWSYdp7CznV9lChoBkdAcQ4kvsZ5zGgHS/poCEdAkWS3BHkLhXV9lChoBkdAcuNq33Hq/2gHTRUBaAhHQJFlqg+Qlrx1fZQoaAZHQHFJhuwX669oB00FAWgIR0CRZgbYsd1ddX2UKGgGR0A5dBxPwd8zaAdL8GgIR0CRZtse4kNXdX2UKGgGR0BxiyjM3ZPEaAdNPQFoCEdAkWfJEQXhwXV9lChoBkdAbBm60Y0l7mgHTaMDaAhHQJFn9vtMPBl1fZQoaAZHQHDdH/T9bX9oB00xAWgIR0CRaPH80k4WdX2UKGgGR0Bv4pun/DLsaAdNBwFoCEdAkWluez2OAHV9lChoBkdAcKSpxm03O2gHTSMBaAhHQJFpjM5fdAR1fZQoaAZHQHB0Rq46Oo5oB00eAWgIR0CRaZr5ZbIMdX2UKGgGR0ByIS6Ymb9ZaAdNVwFoCEdAkWm9roGIK3V9lChoBkdActhhi9ZieGgHTQsBaAhHQJFp8F8ohIR1fZQoaAZHQHD4aIacZtNoB00vAWgIR0CRaiM7lq8EdX2UKGgGR0BvkP4bjtG/aAdNBgFoCEdAkW39pqREGHV9lChoBkdAcRBYFJQLu2gHTRsBaAhHQJFuX5P/JeV1fZQoaAZHQHGhQnc+JP9oB01MAWgIR0CRbqxxT850dX2UKGgGR0BwC8ophF3IaAdNVAFoCEdAkW89cOby6XV9lChoBkdAaunw6QvHtGgHTW4BaAhHQJFvxDKHO8l1fZQoaAZHQG/ObOVxCIFoB00eAWgIR0CRb+AeaKDTdX2UKGgGR0ByRx3fQ8fWaAdNZQFoCEdAkXAEkWykbnV9lChoBkdAbYSdRR/EwWgHTSgBaAhHQJFxQPjGT9t1fZQoaAZHQHFMjoMa0hNoB00vAWgIR0CRcVgx8D0UdX2UKGgGR0BwuhIUahpQaAdNFAFoCEdAkXJMrd30PHV9lChoBkdAcWloZhrnDGgHTRsBaAhHQJFye+yquKZ1fZQoaAZHQG5AroOhCdBoB00ZAWgIR0CRcq64Ds+ndX2UKGgGR0BvH+AAhje9aAdNRQFoCEdAkXM8LfDUE3V9lChoBkdAcVFItlI3BGgHTSMBaAhHQJFzPPUrkKh1fZQoaAZHQG3FgrhBJI1oB007AWgIR0CRc1exOclPdX2UKGgGR0BIz6ya/h2oaAdLwGgIR0CRdZkDZDiPdX2UKGgGR0Bxo7bXYlIFaAdNegFoCEdAkXWnOfNA1XV9lChoBkdAcKaX6InBtWgHS/loCEdAkXWyuloDgnV9lChoBkdAbrsVVxS5y2gHTQ4BaAhHQJF26v7m+0x1fZQoaAZHQHF1OtfXwspoB0vsaAhHQJF3DJ0W/Jx1fZQoaAZHQHIk0KzAvctoB00SAWgIR0CReAOuJUHZdX2UKGgGR0Bw3aCmMwUQaAdNSQFoCEdAkXnIQarFO3V9lChoBkdAclNsLv1DjWgHTREBaAhHQJF6qtRvWH11fZQoaAZHQGx4Y8U21lZoB00WAWgIR0CRewC8OCoTdX2UKGgGR0BwmnM4cWCVaAdNDAFoCEdAkXvudoWYW3V9lChoBkdAbwyW6bvw3GgHTRcBaAhHQJF8rSE12q11fZQoaAZHQHA5+yu6mO5oB010AWgIR0CRfVnFYMfBdX2UKGgGR0BxhYwTM7lraAdNEAFoCEdAkX1w3974SHVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e66b2197d8f1afa2c7770e3c4e3c24c443c4299661542c21d9c31d700dd35e95
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03bfefb83c2e910f48d5fd4c9ab1dd8e95570a54b6ee58f682c5003c918901b0
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (157 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 265.12867575350316, "std_reward": 21.478118881035993, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-12T13:15:34.022110"}
|