cv-14-rakugo / README.md
pinot's picture
End of training
ba29fe1
|
raw
history blame
2.02 kB
metadata
license: apache-2.0
base_model: pinot/wav2vec2-xls-r-300m-ja-cv-14_4
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - wer
model-index:
  - name: cv-14-rakugo
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: train
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 0.1156558533145275

cv-14-rakugo

This model is a fine-tuned version of pinot/wav2vec2-xls-r-300m-ja-cv-14_4 on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3970
  • Wer: 0.1157

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.1
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0.94 2 2.2324 0.2962
No log 1.88 4 0.8925 0.2073
No log 2.82 6 0.3568 0.1269
No log 3.76 8 0.3970 0.1157

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0