pineiden's picture
update model card README.md
f362ff7
metadata
language:
  - es
license: openrail
tags:
  - generated_from_trainer
model-index:
  - name: nominal-groups-recognition-medical-disease-competencia2-bert-medical-ner
    results: []

nominal-groups-recognition-medical-disease-competencia2-bert-medical-ner

This model is a fine-tuned version of ukkendane/bert-medical-ner on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3607
  • Body Part Precision: 0.6555
  • Body Part Recall: 0.7094
  • Body Part F1: 0.6814
  • Body Part Number: 413
  • Disease Precision: 0.6835
  • Disease Recall: 0.7067
  • Disease F1: 0.6949
  • Disease Number: 975
  • Family Member Precision: 1.0
  • Family Member Recall: 0.6
  • Family Member F1: 0.7500
  • Family Member Number: 30
  • Medication Precision: 0.7647
  • Medication Recall: 0.6989
  • Medication F1: 0.7303
  • Medication Number: 93
  • Procedure Precision: 0.5385
  • Procedure Recall: 0.5402
  • Procedure F1: 0.5393
  • Procedure Number: 311
  • Overall Precision: 0.6594
  • Overall Recall: 0.6767
  • Overall F1: 0.6679
  • Overall Accuracy: 0.9079

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 13
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Body Part Precision Body Part Recall Body Part F1 Body Part Number Disease Precision Disease Recall Disease F1 Disease Number Family Member Precision Family Member Recall Family Member F1 Family Member Number Medication Precision Medication Recall Medication F1 Medication Number Procedure Precision Procedure Recall Procedure F1 Procedure Number Overall Precision Overall Recall Overall F1 Overall Accuracy
0.4541 1.0 8025 0.3607 0.6555 0.7094 0.6814 413 0.6835 0.7067 0.6949 975 1.0 0.6 0.7500 30 0.7647 0.6989 0.7303 93 0.5385 0.5402 0.5393 311 0.6594 0.6767 0.6679 0.9079
0.3149 2.0 16050 0.3607 0.6555 0.7094 0.6814 413 0.6835 0.7067 0.6949 975 1.0 0.6 0.7500 30 0.7647 0.6989 0.7303 93 0.5385 0.5402 0.5393 311 0.6594 0.6767 0.6679 0.9079
0.3161 3.0 24075 0.3607 0.6555 0.7094 0.6814 413 0.6835 0.7067 0.6949 975 1.0 0.6 0.7500 30 0.7647 0.6989 0.7303 93 0.5385 0.5402 0.5393 311 0.6594 0.6767 0.6679 0.9079
0.3181 4.0 32100 0.3607 0.6555 0.7094 0.6814 413 0.6835 0.7067 0.6949 975 1.0 0.6 0.7500 30 0.7647 0.6989 0.7303 93 0.5385 0.5402 0.5393 311 0.6594 0.6767 0.6679 0.9079
0.3164 5.0 40125 0.3607 0.6555 0.7094 0.6814 413 0.6835 0.7067 0.6949 975 1.0 0.6 0.7500 30 0.7647 0.6989 0.7303 93 0.5385 0.5402 0.5393 311 0.6594 0.6767 0.6679 0.9079

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.1
  • Tokenizers 0.13.3