metadata
license: mit
tags:
- generated_from_trainer
datasets:
- yelp_review_full
metrics:
- accuracy
model-index:
- name: YELP_roBERTa_5E
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: yelp_review_full
type: yelp_review_full
config: yelp_review_full
split: train
args: yelp_review_full
metrics:
- name: Accuracy
type: accuracy
value: 0.9866666666666667
YELP_roBERTa_5E
This model is a fine-tuned version of roberta-base on the yelp_review_full dataset. It achieves the following results on the evaluation set:
- Loss: 0.0995
- Accuracy: 0.9867
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.5721 | 0.03 | 50 | 0.3248 | 0.88 |
0.2836 | 0.06 | 100 | 0.1190 | 0.9733 |
0.1793 | 0.1 | 150 | 0.1707 | 0.96 |
0.2196 | 0.13 | 200 | 0.0841 | 0.9733 |
0.2102 | 0.16 | 250 | 0.0634 | 0.9867 |
0.2197 | 0.19 | 300 | 0.0763 | 0.98 |
0.1866 | 0.22 | 350 | 0.0640 | 0.9867 |
0.1717 | 0.26 | 400 | 0.0612 | 0.9867 |
0.1443 | 0.29 | 450 | 0.0844 | 0.9733 |
0.1669 | 0.32 | 500 | 0.1297 | 0.9667 |
0.2005 | 0.35 | 550 | 0.0644 | 0.9867 |
0.1543 | 0.38 | 600 | 0.0874 | 0.9867 |
0.1345 | 0.42 | 650 | 0.1853 | 0.96 |
0.1664 | 0.45 | 700 | 0.1157 | 0.9667 |
0.1876 | 0.48 | 750 | 0.0474 | 0.9733 |
0.111 | 0.51 | 800 | 0.0645 | 0.98 |
0.1511 | 0.54 | 850 | 0.0432 | 0.9933 |
0.1846 | 0.58 | 900 | 0.0505 | 0.9867 |
0.151 | 0.61 | 950 | 0.0452 | 0.98 |
0.1338 | 0.64 | 1000 | 0.1007 | 0.98 |
0.1175 | 0.67 | 1050 | 0.0747 | 0.9867 |
0.1818 | 0.7 | 1100 | 0.0852 | 0.98 |
0.1557 | 0.74 | 1150 | 0.0255 | 0.9933 |
0.1487 | 0.77 | 1200 | 0.1266 | 0.9733 |
0.1315 | 0.8 | 1250 | 0.0593 | 0.9867 |
0.1059 | 0.83 | 1300 | 0.0697 | 0.9867 |
0.108 | 0.86 | 1350 | 0.0459 | 0.9933 |
0.1525 | 0.9 | 1400 | 0.0446 | 0.9933 |
0.1185 | 0.93 | 1450 | 0.0528 | 0.9867 |
0.1611 | 0.96 | 1500 | 0.0582 | 0.9867 |
0.1556 | 0.99 | 1550 | 0.0726 | 0.98 |
0.0902 | 1.02 | 1600 | 0.0466 | 0.9867 |
0.1535 | 1.06 | 1650 | 0.0850 | 0.9733 |
0.0787 | 1.09 | 1700 | 0.0869 | 0.9867 |
0.1019 | 1.12 | 1750 | 0.0984 | 0.98 |
0.1234 | 1.15 | 1800 | 0.0358 | 0.9933 |
0.0884 | 1.18 | 1850 | 0.0621 | 0.9867 |
0.0785 | 1.22 | 1900 | 0.0507 | 0.9867 |
0.1454 | 1.25 | 1950 | 0.0793 | 0.98 |
0.1035 | 1.28 | 2000 | 0.0501 | 0.9867 |
0.0579 | 1.31 | 2050 | 0.0935 | 0.9867 |
0.1215 | 1.34 | 2100 | 0.0079 | 1.0 |
0.0958 | 1.38 | 2150 | 0.0673 | 0.9867 |
0.106 | 1.41 | 2200 | 0.0875 | 0.9867 |
0.095 | 1.44 | 2250 | 0.0745 | 0.9867 |
0.0958 | 1.47 | 2300 | 0.0715 | 0.9867 |
0.085 | 1.5 | 2350 | 0.0742 | 0.9867 |
0.082 | 1.54 | 2400 | 0.1053 | 0.9733 |
0.1202 | 1.57 | 2450 | 0.0711 | 0.9867 |
0.1041 | 1.6 | 2500 | 0.0723 | 0.9867 |
0.1145 | 1.63 | 2550 | 0.0361 | 0.9867 |
0.0909 | 1.66 | 2600 | 0.0868 | 0.9867 |
0.1029 | 1.7 | 2650 | 0.0680 | 0.9867 |
0.1083 | 1.73 | 2700 | 0.0599 | 0.9867 |
0.0871 | 1.76 | 2750 | 0.0452 | 0.9867 |
0.1506 | 1.79 | 2800 | 0.0344 | 0.9933 |
0.0778 | 1.82 | 2850 | 0.0380 | 0.9933 |
0.0982 | 1.86 | 2900 | 0.0349 | 0.9933 |
0.1296 | 1.89 | 2950 | 0.0713 | 0.9867 |
0.0836 | 1.92 | 3000 | 0.0693 | 0.9867 |
0.0699 | 1.95 | 3050 | 0.1023 | 0.98 |
0.0631 | 1.98 | 3100 | 0.0852 | 0.98 |
0.0724 | 2.02 | 3150 | 0.0835 | 0.9867 |
0.0898 | 2.05 | 3200 | 0.0872 | 0.9867 |
0.0642 | 2.08 | 3250 | 0.0427 | 0.9933 |
0.0524 | 2.11 | 3300 | 0.0731 | 0.9867 |
0.0415 | 2.14 | 3350 | 0.0632 | 0.9867 |
0.0604 | 2.18 | 3400 | 0.0428 | 0.9867 |
0.0701 | 2.21 | 3450 | 0.0671 | 0.9867 |
0.0668 | 2.24 | 3500 | 0.0360 | 0.9933 |
0.0442 | 2.27 | 3550 | 0.0454 | 0.9933 |
0.0677 | 2.3 | 3600 | 0.0517 | 0.9867 |
0.0965 | 2.34 | 3650 | 0.0659 | 0.98 |
0.0781 | 2.37 | 3700 | 0.0732 | 0.9867 |
0.0421 | 2.4 | 3750 | 0.0855 | 0.9867 |
0.0674 | 2.43 | 3800 | 0.0813 | 0.9867 |
0.0613 | 2.46 | 3850 | 0.0859 | 0.98 |
0.0679 | 2.5 | 3900 | 0.0721 | 0.9867 |
0.0417 | 2.53 | 3950 | 0.0977 | 0.9867 |
0.0616 | 2.56 | 4000 | 0.0789 | 0.9867 |
0.0678 | 2.59 | 4050 | 0.0804 | 0.9867 |
0.0651 | 2.62 | 4100 | 0.0994 | 0.98 |
0.0714 | 2.66 | 4150 | 0.0744 | 0.98 |
0.034 | 2.69 | 4200 | 0.0679 | 0.9867 |
0.0356 | 2.72 | 4250 | 0.0432 | 0.9933 |
0.0813 | 2.75 | 4300 | 0.0483 | 0.9933 |
0.052 | 2.78 | 4350 | 0.0689 | 0.9867 |
0.0611 | 2.82 | 4400 | 0.0474 | 0.9867 |
0.0615 | 2.85 | 4450 | 0.0557 | 0.9867 |
0.0569 | 2.88 | 4500 | 0.1056 | 0.98 |
0.0352 | 2.91 | 4550 | 0.0443 | 0.9933 |
0.0312 | 2.94 | 4600 | 0.1026 | 0.98 |
0.0662 | 2.98 | 4650 | 0.0677 | 0.9867 |
0.0694 | 3.01 | 4700 | 0.0368 | 0.9933 |
0.0144 | 3.04 | 4750 | 0.0647 | 0.9867 |
0.0378 | 3.07 | 4800 | 0.0893 | 0.9867 |
0.0393 | 3.1 | 4850 | 0.0841 | 0.9867 |
0.0598 | 3.13 | 4900 | 0.0594 | 0.9867 |
0.0329 | 3.17 | 4950 | 0.0933 | 0.9867 |
0.036 | 3.2 | 5000 | 0.0974 | 0.9867 |
0.0166 | 3.23 | 5050 | 0.0962 | 0.9867 |
0.0189 | 3.26 | 5100 | 0.0827 | 0.9867 |
0.0482 | 3.29 | 5150 | 0.0955 | 0.9867 |
0.0105 | 3.33 | 5200 | 0.0745 | 0.9867 |
0.0447 | 3.36 | 5250 | 0.1038 | 0.9867 |
0.0495 | 3.39 | 5300 | 0.0684 | 0.9867 |
0.0445 | 3.42 | 5350 | 0.0815 | 0.9867 |
0.0006 | 3.45 | 5400 | 0.1012 | 0.9867 |
0.0214 | 3.49 | 5450 | 0.0707 | 0.9867 |
0.0289 | 3.52 | 5500 | 0.1000 | 0.9867 |
0.0304 | 3.55 | 5550 | 0.1069 | 0.9867 |
0.0339 | 3.58 | 5600 | 0.1079 | 0.9867 |
0.0227 | 3.61 | 5650 | 0.1032 | 0.9867 |
0.0626 | 3.65 | 5700 | 0.0978 | 0.9867 |
0.04 | 3.68 | 5750 | 0.0965 | 0.9867 |
0.0358 | 3.71 | 5800 | 0.1048 | 0.9867 |
0.0287 | 3.74 | 5850 | 0.0921 | 0.9867 |
0.049 | 3.77 | 5900 | 0.1108 | 0.98 |
0.0497 | 3.81 | 5950 | 0.0795 | 0.9867 |
0.0047 | 3.84 | 6000 | 0.0979 | 0.9867 |
0.0252 | 3.87 | 6050 | 0.1071 | 0.9867 |
0.0691 | 3.9 | 6100 | 0.0821 | 0.9867 |
0.0419 | 3.93 | 6150 | 0.0896 | 0.9867 |
0.0197 | 3.97 | 6200 | 0.0943 | 0.9867 |
0.0281 | 4.0 | 6250 | 0.0901 | 0.9867 |
0.0118 | 4.03 | 6300 | 0.0950 | 0.9867 |
0.0057 | 4.06 | 6350 | 0.1031 | 0.9867 |
0.0335 | 4.09 | 6400 | 0.0896 | 0.9867 |
0.0095 | 4.13 | 6450 | 0.0966 | 0.9867 |
0.05 | 4.16 | 6500 | 0.0977 | 0.9867 |
0.0142 | 4.19 | 6550 | 0.1174 | 0.98 |
0.018 | 4.22 | 6600 | 0.0963 | 0.9867 |
0.0274 | 4.25 | 6650 | 0.0953 | 0.9867 |
0.0199 | 4.29 | 6700 | 0.0968 | 0.9867 |
0.0171 | 4.32 | 6750 | 0.0963 | 0.9867 |
0.0195 | 4.35 | 6800 | 0.0916 | 0.9867 |
0.0091 | 4.38 | 6850 | 0.0954 | 0.9867 |
0.0115 | 4.41 | 6900 | 0.0974 | 0.9867 |
0.0299 | 4.45 | 6950 | 0.0971 | 0.9867 |
0.0338 | 4.48 | 7000 | 0.0922 | 0.9867 |
0.0107 | 4.51 | 7050 | 0.0964 | 0.9867 |
0.0063 | 4.54 | 7100 | 0.0921 | 0.9867 |
0.0099 | 4.57 | 7150 | 0.0923 | 0.9867 |
0.0101 | 4.61 | 7200 | 0.0971 | 0.9867 |
0.0262 | 4.64 | 7250 | 0.1008 | 0.9867 |
0.0097 | 4.67 | 7300 | 0.0999 | 0.9867 |
0.0302 | 4.7 | 7350 | 0.0980 | 0.9867 |
0.0225 | 4.73 | 7400 | 0.0976 | 0.9867 |
0.0235 | 4.77 | 7450 | 0.1016 | 0.9867 |
0.0106 | 4.8 | 7500 | 0.1034 | 0.9867 |
0.0495 | 4.83 | 7550 | 0.1135 | 0.98 |
0.0228 | 4.86 | 7600 | 0.1034 | 0.9867 |
0.0229 | 4.89 | 7650 | 0.0990 | 0.9867 |
0.0206 | 4.93 | 7700 | 0.0993 | 0.9867 |
0.0188 | 4.96 | 7750 | 0.0993 | 0.9867 |
0.0189 | 4.99 | 7800 | 0.0995 | 0.9867 |
Framework versions
- Transformers 4.24.0
- Pytorch 1.13.0
- Datasets 2.3.2
- Tokenizers 0.13.2