metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- accuracy
model-index:
- name: TweetEval_BERT_5E
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
config: sentiment
split: train
args: sentiment
metrics:
- name: Accuracy
type: accuracy
value: 0.9266666666666666
TweetEval_BERT_5E
This model is a fine-tuned version of bert-base-cased on the tweet_eval dataset. It achieves the following results on the evaluation set:
- Loss: 0.5419
- Accuracy: 0.9267
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6264 | 0.04 | 50 | 0.5266 | 0.74 |
0.5054 | 0.08 | 100 | 0.5959 | 0.6333 |
0.4732 | 0.12 | 150 | 0.3524 | 0.86 |
0.3916 | 0.16 | 200 | 0.3195 | 0.8667 |
0.3477 | 0.2 | 250 | 0.2878 | 0.8867 |
0.3116 | 0.24 | 300 | 0.2903 | 0.92 |
0.3039 | 0.28 | 350 | 0.2488 | 0.8933 |
0.2633 | 0.32 | 400 | 0.2530 | 0.92 |
0.2667 | 0.37 | 450 | 0.2125 | 0.9267 |
0.2604 | 0.41 | 500 | 0.2628 | 0.8867 |
0.278 | 0.45 | 550 | 0.2322 | 0.8867 |
0.2625 | 0.49 | 600 | 0.1903 | 0.92 |
0.2808 | 0.53 | 650 | 0.2400 | 0.8933 |
0.2396 | 0.57 | 700 | 0.2184 | 0.9067 |
0.2571 | 0.61 | 750 | 0.1906 | 0.9133 |
0.2676 | 0.65 | 800 | 0.2467 | 0.9067 |
0.2288 | 0.69 | 850 | 0.2038 | 0.9133 |
0.2959 | 0.73 | 900 | 0.1941 | 0.9 |
0.2619 | 0.77 | 950 | 0.2100 | 0.9333 |
0.2504 | 0.81 | 1000 | 0.1523 | 0.9333 |
0.2338 | 0.85 | 1050 | 0.1429 | 0.94 |
0.2529 | 0.89 | 1100 | 0.1269 | 0.94 |
0.2238 | 0.93 | 1150 | 0.1722 | 0.9333 |
0.2295 | 0.97 | 1200 | 0.1874 | 0.94 |
0.2089 | 1.01 | 1250 | 0.2214 | 0.9067 |
0.1406 | 1.06 | 1300 | 0.3410 | 0.9133 |
0.1587 | 1.1 | 1350 | 0.3330 | 0.9133 |
0.1732 | 1.14 | 1400 | 0.2716 | 0.9133 |
0.195 | 1.18 | 1450 | 0.3726 | 0.92 |
0.1777 | 1.22 | 1500 | 0.2430 | 0.9267 |
0.1433 | 1.26 | 1550 | 0.3011 | 0.9267 |
0.1333 | 1.3 | 1600 | 0.2489 | 0.9333 |
0.1516 | 1.34 | 1650 | 0.3340 | 0.9267 |
0.1774 | 1.38 | 1700 | 0.2497 | 0.8933 |
0.1608 | 1.42 | 1750 | 0.3234 | 0.9 |
0.1534 | 1.46 | 1800 | 0.3383 | 0.9133 |
0.1287 | 1.5 | 1850 | 0.3134 | 0.9133 |
0.1422 | 1.54 | 1900 | 0.3330 | 0.9 |
0.1578 | 1.58 | 1950 | 0.3281 | 0.9133 |
0.1786 | 1.62 | 2000 | 0.2939 | 0.9267 |
0.2019 | 1.66 | 2050 | 0.3535 | 0.9 |
0.1995 | 1.7 | 2100 | 0.3032 | 0.9067 |
0.159 | 1.75 | 2150 | 0.2598 | 0.9267 |
0.1493 | 1.79 | 2200 | 0.2391 | 0.9267 |
0.1748 | 1.83 | 2250 | 0.2258 | 0.92 |
0.1783 | 1.87 | 2300 | 0.2749 | 0.9133 |
0.1619 | 1.91 | 2350 | 0.2699 | 0.92 |
0.1378 | 1.95 | 2400 | 0.2776 | 0.9067 |
0.1529 | 1.99 | 2450 | 0.2235 | 0.9333 |
0.1071 | 2.03 | 2500 | 0.2841 | 0.9267 |
0.0812 | 2.07 | 2550 | 0.3178 | 0.9267 |
0.0464 | 2.11 | 2600 | 0.3567 | 0.92 |
0.1108 | 2.15 | 2650 | 0.2723 | 0.92 |
0.0845 | 2.19 | 2700 | 0.2774 | 0.9267 |
0.0795 | 2.23 | 2750 | 0.3027 | 0.9267 |
0.0403 | 2.27 | 2800 | 0.3566 | 0.9267 |
0.0664 | 2.31 | 2850 | 0.4015 | 0.92 |
0.0659 | 2.35 | 2900 | 0.4298 | 0.9067 |
0.1059 | 2.39 | 2950 | 0.4028 | 0.92 |
0.105 | 2.44 | 3000 | 0.3701 | 0.92 |
0.0808 | 2.48 | 3050 | 0.3206 | 0.9267 |
0.0811 | 2.52 | 3100 | 0.3644 | 0.9133 |
0.0458 | 2.56 | 3150 | 0.3781 | 0.9267 |
0.0764 | 2.6 | 3200 | 0.3749 | 0.9267 |
0.0567 | 2.64 | 3250 | 0.3995 | 0.92 |
0.0971 | 2.68 | 3300 | 0.3455 | 0.92 |
0.0579 | 2.72 | 3350 | 0.4508 | 0.92 |
0.0853 | 2.76 | 3400 | 0.4350 | 0.92 |
0.0577 | 2.8 | 3450 | 0.3804 | 0.9333 |
0.0732 | 2.84 | 3500 | 0.4387 | 0.92 |
0.0874 | 2.88 | 3550 | 0.3885 | 0.9333 |
0.1031 | 2.92 | 3600 | 0.3937 | 0.92 |
0.0335 | 2.96 | 3650 | 0.4963 | 0.8933 |
0.0913 | 3.0 | 3700 | 0.3827 | 0.9333 |
0.047 | 3.04 | 3750 | 0.4136 | 0.92 |
0.0531 | 3.08 | 3800 | 0.4362 | 0.92 |
0.0265 | 3.12 | 3850 | 0.4857 | 0.92 |
0.038 | 3.17 | 3900 | 0.4425 | 0.92 |
0.0294 | 3.21 | 3950 | 0.4347 | 0.92 |
0.0367 | 3.25 | 4000 | 0.4291 | 0.9333 |
0.0102 | 3.29 | 4050 | 0.5178 | 0.9267 |
0.0311 | 3.33 | 4100 | 0.4784 | 0.9267 |
0.0274 | 3.37 | 4150 | 0.5421 | 0.9267 |
0.0275 | 3.41 | 4200 | 0.5194 | 0.92 |
0.0795 | 3.45 | 4250 | 0.4788 | 0.92 |
0.0413 | 3.49 | 4300 | 0.4393 | 0.9267 |
0.0373 | 3.53 | 4350 | 0.4965 | 0.92 |
0.0303 | 3.57 | 4400 | 0.4284 | 0.9267 |
0.0248 | 3.61 | 4450 | 0.4476 | 0.9267 |
0.0557 | 3.65 | 4500 | 0.4690 | 0.92 |
0.0358 | 3.69 | 4550 | 0.4774 | 0.9133 |
0.0194 | 3.73 | 4600 | 0.4755 | 0.92 |
0.0473 | 3.77 | 4650 | 0.4637 | 0.92 |
0.0133 | 3.81 | 4700 | 0.4868 | 0.92 |
0.0204 | 3.86 | 4750 | 0.4886 | 0.9267 |
0.0338 | 3.9 | 4800 | 0.5101 | 0.9267 |
0.0424 | 3.94 | 4850 | 0.4812 | 0.9267 |
0.0237 | 3.98 | 4900 | 0.4837 | 0.9267 |
0.0372 | 4.02 | 4950 | 0.5000 | 0.9267 |
0.0254 | 4.06 | 5000 | 0.5210 | 0.92 |
0.024 | 4.1 | 5050 | 0.5272 | 0.92 |
0.0117 | 4.14 | 5100 | 0.5447 | 0.92 |
0.018 | 4.18 | 5150 | 0.5353 | 0.92 |
0.0097 | 4.22 | 5200 | 0.5415 | 0.9267 |
0.0151 | 4.26 | 5250 | 0.5447 | 0.9267 |
0.0118 | 4.3 | 5300 | 0.5285 | 0.9267 |
0.0004 | 4.34 | 5350 | 0.5399 | 0.9267 |
0.0102 | 4.38 | 5400 | 0.5552 | 0.9267 |
0.0012 | 4.42 | 5450 | 0.5689 | 0.92 |
0.02 | 4.46 | 5500 | 0.5619 | 0.9267 |
0.0056 | 4.5 | 5550 | 0.5784 | 0.92 |
0.0271 | 4.55 | 5600 | 0.5766 | 0.92 |
0.0191 | 4.59 | 5650 | 0.5662 | 0.92 |
0.0311 | 4.63 | 5700 | 0.5514 | 0.9267 |
0.0167 | 4.67 | 5750 | 0.5510 | 0.9267 |
0.0293 | 4.71 | 5800 | 0.5571 | 0.9267 |
0.0304 | 4.75 | 5850 | 0.5494 | 0.92 |
0.0161 | 4.79 | 5900 | 0.5469 | 0.9267 |
0.0017 | 4.83 | 5950 | 0.5468 | 0.9267 |
0.0176 | 4.87 | 6000 | 0.5426 | 0.9267 |
0.0094 | 4.91 | 6050 | 0.5402 | 0.9267 |
0.0041 | 4.95 | 6100 | 0.5416 | 0.9267 |
0.0281 | 4.99 | 6150 | 0.5419 | 0.9267 |
Framework versions
- Transformers 4.24.0
- Pytorch 1.13.0
- Datasets 2.3.2
- Tokenizers 0.13.2