xl-lexeme / README.md
pierluigic's picture
Update README.md
71205ad
|
raw
history blame
2.23 kB
metadata
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
  - transformers

pierluigic/xl-lexeme

This is a sentence-transformers model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers
git clone https://github.com/pierluigic/xl-lexeme
cd xl-lexeme

Then you can use the model like this:

from WordTransformer import WordTransformer

model = WordTransformer('pierluigic/xl-lexeme')
embeddings = model.encode(sentences)
print(embeddings)

Training

The model was trained with the parameters:

DataLoader:

torch.utils.data.dataloader.DataLoader of length 16531 with parameters:

{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

Loss:

sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss with parameters:

{'distance_metric': 'SiameseDistanceMetric.COSINE_DISTANCE', 'margin': 0.5, 'size_average': True}

Parameters of the fit()-Method:

{
    "epochs": 10,
    "evaluation_steps": 4132,
    "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'transformers.optimization.AdamW'>",
    "optimizer_params": {
        "lr": 1e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 16531.0,
    "weight_decay": 0.0
}

Full Model Architecture

SentenceTransformerTarget(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)

Citing & Authors