|
from typing import Dict, List, Any |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, StoppingCriteria, StoppingCriteriaList |
|
|
|
|
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(path) |
|
model = AutoModelForCausalLM.from_pretrained(path) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
self.pipeline = pipeline('text-generation', model=model, tokenizer=tokenizer) |
|
self.stopping_criteria = StoppingCriteriaList([StopAtPeriodCriteria(tokenizer)]) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
inputs (:obj: `str` | `PIL.Image` | `np.array`) |
|
kwargs |
|
Return: |
|
A :obj:`list` | `dict`: will be serialized and returned |
|
""" |
|
inputs = data.pop("inputs", data) |
|
|
|
prediction = self.pipeline(inputs, stopping_criteria=self.stopping_criteria, max_new_tokens=100) |
|
return prediction |
|
|
|
|
|
class StopAtPeriodCriteria(StoppingCriteria): |
|
def __init__(self, tokenizer): |
|
self.tokenizer = tokenizer |
|
|
|
def __call__(self, input_ids, scores, **kwargs): |
|
|
|
last_token_text = self.tokenizer.decode(input_ids[:, -1], skip_special_tokens=True) |
|
|
|
return '.' in last_token_text |